Abstract
The CT antigenic determinants have previously been shown to be present on the T200 glycoproteins and other proteins of murine cytotoxic T cell clones but not of T helper clones or nonactivated lymphocytes (1, 2). Two determinants recognized by mAbs CT1 and CT2 are also expressed on thymocytes in a developmentally regulated fashion during fetal thymus ontogeny and are found in a subset of Lyt-2+ intraepithelial lymphocytes in the intestinal mucosa (3-5). Previous studies of the biosynthesis of CT+ proteins suggested that these determinants were composed of carbohydrate (8). We now demonstrate that the anti-CT mAbs react with a carbohydrate determinant at the nonreducing terminus of O- linked oligosaccharides that has the configuration GalNAc beta 1,4[SA alpha 2,3]-galactose. The CT antibodies detected this determinant not only on CTL clones but also in the human blood group antigens Cad and Sda+. Variant CTL lines, non-Cad erythrocytes, and Sda- glycoproteins that lacked the GalNAc residue did not bind the CT mAb. Sialic acid was essential for CT antigen expression since neuraminidase or mild periodate treatment abrogated CT antibody binding. In addition, other carbohydrate structures with terminal GalNAc residues such as the A or Tn blood group antigens were not recognized. The CT antibodies thus define GalNAc and sialic acid containing carbohydrate antigens that are expressed on discrete subsets of T lymphocytes and may also be useful reagents for the detection of Cad and Sda+ blood group antigens.
Full Text
The Full Text of this article is available as a PDF (831.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BIRD G. W. G. Relationship of the blood sub-groups A1, A2 and A1B, A2B to haemagglutinins present in the seeds of Dolichos biflorus. Nature. 1952 Oct 18;170(4329):674–674. doi: 10.1038/170674a0. [DOI] [PubMed] [Google Scholar]
- Barclay A. N., Jackson D. I., Willis A. C., Williams A. F. Lymphocyte specific heterogeneity in the rat leucocyte common antigen (T200) is due to differences in polypeptide sequences near the NH2-terminus. EMBO J. 1987 May;6(5):1259–1264. doi: 10.1002/j.1460-2075.1987.tb02362.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Blanchard D., Capon C., Leroy Y., Cartron J. P., Fournet B. Comparative study of glycophorin A derived O-glycans from human Cad, Sd(a+) and Sd(a-) erythrocytes. Biochem J. 1985 Dec 15;232(3):813–818. doi: 10.1042/bj2320813. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Blanchard D., Cartron J. P., Fournet B., Montreuil J., van Halbeek H., Vliegenthart J. F. Primary structure of the oligosaccharide determinant of blood group Cad specificity. J Biol Chem. 1983 Jun 25;258(12):7691–7695. [PubMed] [Google Scholar]
- Cheresh D. A., Reisfeld R. A., Varki A. P. O-acetylation of disialoganglioside GD3 by human melanoma cells creates a unique antigenic determinant. Science. 1984 Aug 24;225(4664):844–846. doi: 10.1126/science.6206564. [DOI] [PubMed] [Google Scholar]
- Conzelmann A., Bron C. Expression of UDP-N-acetylgalactosamine: beta-galactose beta 1,4-N-acetylgalactosaminyltransferase in functionally defined T-cell clones. Biochem J. 1987 Mar 15;242(3):817–824. doi: 10.1042/bj2420817. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Conzelmann A., Kornfeld S. A murine cytotoxic T lymphocyte cell line resistant to Vicia villosa lectin is deficient in UDP-GalNAc:beta-galactose beta 1,4-N-acetylgalactosaminyltransferase. J Biol Chem. 1984 Oct 25;259(20):12536–12542. [PubMed] [Google Scholar]
- Conzelmann A., Kornfeld S. Beta-linked N-acetylgalactosamine residues present at the nonreducing termini of O-linked oligosaccharides of a cloned murine cytotoxic T lymphocyte line are absent in a Vicia villosa lectin-resistant mutant cell line. J Biol Chem. 1984 Oct 25;259(20):12528–12535. [PubMed] [Google Scholar]
- Conzelmann A., Pink R., Acuto O., Mach J. P., Dolivo S., Nabholz M. Presence of T 145 on cytolytic T cell lines and their lectin-resistant mutants. Eur J Immunol. 1980 Nov;10(11):860–868. doi: 10.1002/eji.1830101111. [DOI] [PubMed] [Google Scholar]
- Donald A. S., Soh C. P., Watkins W. M., Morgan W. T. N-Acetyl-D-galactosaminyl-beta-(1 goes to 4)-d-galactose: a terminal non-reducing structure in human blood group Sda-active Tamm-Horsfall urinary glycoprotein. Biochem Biophys Res Commun. 1982 Jan 15;104(1):58–65. doi: 10.1016/0006-291x(82)91940-4. [DOI] [PubMed] [Google Scholar]
- Donald A. S., Yates A. D., Soh C. P., Morgan W. T., Watkins W. M. A blood group Sda-active pentasaccharide isolated from Tamm-Horsfall urinary glycoprotein. Biochem Biophys Res Commun. 1983 Sep 15;115(2):625–631. doi: 10.1016/s0006-291x(83)80190-9. [DOI] [PubMed] [Google Scholar]
- Edelman G. M. Cell adhesion and the molecular processes of morphogenesis. Annu Rev Biochem. 1985;54:135–169. doi: 10.1146/annurev.bi.54.070185.001031. [DOI] [PubMed] [Google Scholar]
- Elhammer A., Kornfeld S. Two enzymes involved in the synthesis of O-linked oligosaccharides are localized on membranes of different densities in mouse lymphoma BW5147 cells. J Cell Biol. 1984 Jul;99(1 Pt 1):327–331. doi: 10.1083/jcb.99.1.327. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kimura A. K., Wigzell H. Cell surface glycoproteins of murine cytotoxic T lymphocytes. I. T 145, a new cell surface glycoprotein selectively expressed on Ly 1-2+ cytotoxic T lymphocytes. J Exp Med. 1978 May 1;147(5):1418–1434. doi: 10.1084/jem.147.5.1418. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kimura A., Wigzell H., Holmquist G., Ersson B., Carlsson P. Selective affinity fractionation of murine cytotoxic T lymphocytes (CTL). Unique lectin specific binding of the CTL associated surface glycoprotein, T 145. J Exp Med. 1979 Feb 1;149(2):473–484. doi: 10.1084/jem.149.2.473. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Klein J. R. Ontogeny of the Thy-1-, Lyt-2+ murine intestinal intraepithelial lymphocyte. Characterization of a unique population of thymus-independent cytotoxic effector cells in the intestinal mucosa. J Exp Med. 1986 Jul 1;164(1):309–314. doi: 10.1084/jem.164.1.309. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lefrancois L. Carbohydrate differentiation antigens of murine T cells: expression on intestinal lymphocytes and intestinal epithelium. J Immunol. 1987 May 15;138(10):3375–3384. [PubMed] [Google Scholar]
- Lefrancois L. Expression of carbohydrate differentiation antigens during ontogeny of the murine thymus. J Immunol. 1987 Oct 1;139(7):2220–2229. [PubMed] [Google Scholar]
- Lefrancois L., Kanagawa O. Coordinate expression of cytolytic activity and cytotoxic T cell-specific carbohydrate antigens in a T cell hybridoma. J Immunol. 1986 Feb 15;136(4):1171–1177. [PubMed] [Google Scholar]
- Lefrancois L., Puddington L., Machamer C. E., Bevan M. J. Acquisition of cytotoxic T lymphocyte-specific carbohydrate differentiation antigens. J Exp Med. 1985 Oct 1;162(4):1275–1293. doi: 10.1084/jem.162.4.1275. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lefrancois L., Thomas M. L., Bevan M. J., Trowbridge I. S. Different classes of T lymphocytes have different mRNAs for the leukocyte-common antigen, T200. J Exp Med. 1986 May 1;163(5):1337–1342. doi: 10.1084/jem.163.5.1337. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lefrançois L., Bevan M. J. Functional modifications of cytotoxic T-lymphocyte T200 glycoprotein recognized by monoclonal antibodies. Nature. 1985 Apr 4;314(6010):449–452. doi: 10.1038/314449a0. [DOI] [PubMed] [Google Scholar]
- Lefrançois L., Bevan M. J. Novel antigenic determinants of the T200 glycoprotein expressed preferentially by activated cytotoxic T lymphocytes. J Immunol. 1985 Jul;135(1):374–383. [PubMed] [Google Scholar]
- McLean R. L., Suttajit M., Beidler J., Winzler R. J. N-acetylneuraminic acid analogues. I. Preparation of the 8-carbon and 7-carbon compounds. J Biol Chem. 1971 Feb 10;246(3):803–809. [PubMed] [Google Scholar]
- Piller F., Blanchard D., Huet M., Cartron J. P. Identification of a alpha-NeuAc-(2----3)-beta-D-galactopyranosyl N-acetyl-beta-D-galactosaminyltransferase in human kidney. Carbohydr Res. 1986 Jun 1;149(1):171–184. doi: 10.1016/s0008-6215(00)90376-8. [DOI] [PubMed] [Google Scholar]
- Ralph S. J., Thomas M. L., Morton C. C., Trowbridge I. S. Structural variants of human T200 glycoprotein (leukocyte-common antigen). EMBO J. 1987 May;6(5):1251–1257. doi: 10.1002/j.1460-2075.1987.tb02361.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Saga Y., Tung J. S., Shen F. W., Boyse E. A. Alternative use of 5' exons in the specification of Ly-5 isoforms distinguishing hematopoietic cell lineages. Proc Natl Acad Sci U S A. 1987 Aug;84(15):5364–5368. doi: 10.1073/pnas.84.15.5364. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shukla A. K., Schauer R. Fluorimetric determination of unsubstituted and 9(8)-O-acetylated sialic acids in erythrocyte membranes. Hoppe Seylers Z Physiol Chem. 1982 Mar;363(3):255–262. doi: 10.1515/bchm2.1982.363.1.255. [DOI] [PubMed] [Google Scholar]
- Soh C. P., Morgan W. T., Watkins W. M., Donald A. S. The relationship between the N-acetylgalactosamine content and the blood group Sda activity of Tamm and Horsfall urinary glycoprotein. Biochem Biophys Res Commun. 1980 Apr 29;93(4):1132–1139. doi: 10.1016/0006-291x(80)90607-5. [DOI] [PubMed] [Google Scholar]
- Thomas M. L., Reynolds P. J., Chain A., Ben-Neriah Y., Trowbridge I. S. B-cell variant of mouse T200 (Ly-5): evidence for alternative mRNA splicing. Proc Natl Acad Sci U S A. 1987 Aug;84(15):5360–5363. doi: 10.1073/pnas.84.15.5360. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tollefsen S. E., Kornfeld R. The B4 lectin from Vicia villosa seeds interacts with N-acetylgalactosamine residues alpha-linked to serine or threonine residues in cell surface glycoproteins. J Biol Chem. 1983 Apr 25;258(8):5172–5176. [PubMed] [Google Scholar]
- Trowbridge I. S. Interspecies spleen-myeloma hybrid producing monoclonal antibodies against mouse lymphocyte surface glycoprotein, T200. J Exp Med. 1978 Jul 1;148(1):313–323. doi: 10.1084/jem.148.1.313. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Van Lenten L., Ashwell G. Studies on the chemical and enzymatic modification of glycoproteins. A general method for the tritiation of sialic acid-containing glycoproteins. J Biol Chem. 1971 Mar 25;246(6):1889–1894. [PubMed] [Google Scholar]
- Varki A., Kornfeld S. An autosomal dominant gene regulates the extent of 9-O-acetylation of murine erythrocyte sialic acids. A probable explanation for the variation in capacity to activate the human alternate complement pathway. J Exp Med. 1980 Sep 1;152(3):532–544. doi: 10.1084/jem.152.3.532. [DOI] [PMC free article] [PubMed] [Google Scholar]
- WARREN L. The thiobarbituric acid assay of sialic acids. J Biol Chem. 1959 Aug;234(8):1971–1975. [PubMed] [Google Scholar]