Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1988 Mar 1;167(3):762–776. doi: 10.1084/jem.167.3.762

Differentiation in vitro of T3+ large granular lymphocytes with characteristic cytotoxic activity from an isolated hematopoietic progenitor colony

PMCID: PMC2188877  PMID: 3258352

Abstract

Blast colonies were developed by rIL-3 from the spleen cells of mice pretreated with 5-fluorouracil (5-FU) in the methylcellulose cultures. When such IL-3-induced blast colonies were individually lifted up and recultured in the presence of rIL-3 and recombinant erythropoietin (rEpo), a variety of hematopoietic colonies developed from every single colony, including neutrophils, macrophages, eosinophils, megakaryocytes, mast cells, and erythroblasts. The results indicated that IL-3-induced blast colonies consisted of multipotential hematopoietic progenitor cells. By culturing individual IL-3-induced blast colonies in the presence of rIL-2 and irradiated peritoneal macrophages, on the other hand, the proliferation of homogeneous lymphoid cells was observed in 5 of 24 wells, each of which received a single blast colony. Morphologically, they were typical large granular lymphocytes (LGL), and thus it was indicated that LGL could be differentiated directly from the hematopoietic progenitor cells utterly in vitro by rIL-2 and accessory macrophages. From one of these culture wells, a continuous LGL line, IL3B1, was successfully obtained. The proliferation of IL3B1 was dependent on IL-2 in the presence of accessory macrophages, but they no longer responded to IL-3, nor to another T cell growth factor, IL-4. Flow cytometric analysis indicated that the phenotype of IL3B1 was Thy-1+,T3+,L3T4-,Lyt-2-,T200+ Asialo GM1+, whereas that of original IL-3-induced blast cells was Thy-1+,T3- ,L3T4-,Lyt-2-,B220-. The results suggested that the expression of T3 molecules was induced in the process of LGL differentiation from the hematopoietic progenitor cells in vitro. Conforming to this, it was revealed that both gamma and beta chain genes of the TCR were rearranged in IL3B1. Northern blot analysis indicated that IL3B1 had abundant mRNA for gamma chain, while mRNA for beta chain was rather faint. Functionally, IL3B1 exhibited typical NK-patterned cytotoxic activity against a panel of tumor cell targets. In addition, they showed significant cytotoxic activity against normal bone marrow cells, as well as various factor-dependent myelogenous progenitor cell lines, all of which were resistant to endogenous NK activity of the fresh spleen cells. These results indicated that at least a set of T3+ LGL with rearranged TCR genes could be directly differentiated from isolated hematopoietic progenitor cells in vitro. Results also suggested that such a prethymically differentiated subset of T-lineage lymphocytes, namely T3+ double-negative LGL, had particular cytotoxic activity in addition to conventional NK activity, which might well contribute to feedback regulation of hematopoiesis.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ang S. L., Seidman J. G., Peterman G. M., Duby A. D., Benjamin D., Lee S. J., Hafler D. A. Functional gamma chain-associated T cell receptors on cerebrospinal fluid-derived natural killer-like T cell clones. J Exp Med. 1987 May 1;165(5):1453–1458. doi: 10.1084/jem.165.5.1453. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Basch R. S., Berman J. W. Thy-1 determinants are present on many murine hematopoietic cells other than T cells. Eur J Immunol. 1982 May;12(5):359–364. doi: 10.1002/eji.1830120502. [DOI] [PubMed] [Google Scholar]
  3. Brenner M. B., McLean J., Dialynas D. P., Strominger J. L., Smith J. A., Owen F. L., Seidman J. G., Ip S., Rosen F., Krangel M. S. Identification of a putative second T-cell receptor. Nature. 1986 Jul 10;322(6075):145–149. doi: 10.1038/322145a0. [DOI] [PubMed] [Google Scholar]
  4. Ceredig R., Dialynas D. P., Fitch F. W., MacDonald H. R. Precursors of T cell growth factor producing cells in the thymus: ontogeny, frequency, and quantitative recovery in a subpopulation of phenotypically mature thymocytes defined by monoclonal antibody GK-1.5. J Exp Med. 1983 Nov 1;158(5):1654–1671. doi: 10.1084/jem.158.5.1654. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Dexter T. M., Garland J., Scott D., Scolnick E., Metcalf D. Growth of factor-dependent hemopoietic precursor cell lines. J Exp Med. 1980 Oct 1;152(4):1036–1047. doi: 10.1084/jem.152.4.1036. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Freimark B., Lanier L., Phillips J., Quertermous T., Fox R. Comparison of T cell receptor gene rearrangements in patients with large granular T cell leukemia and Felty's syndrome. J Immunol. 1987 Mar 15;138(6):1724–1729. [PubMed] [Google Scholar]
  7. Gillis S., Union N. A., Baker P. E., Smith K. A. The in vitro generation and sustained culture of nude mouse cytolytic T-lymphocytes. J Exp Med. 1979 Jun 1;149(6):1460–1476. doi: 10.1084/jem.149.6.1460. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hattori M., Sudo T., Iizuka M., Kobayashi S., Nishio S., Kano S., Minato N. Generation of continuous large granular lymphocyte lines by interleukin 2 from the spleen cells of mice infected with Moloney leukemia virus. Involvement of interleukin 3. J Exp Med. 1987 Oct 1;166(4):833–849. doi: 10.1084/jem.166.4.833. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hodgson G. S., Bradley T. R. Properties of haematopoietic stem cells surviving 5-fluorouracil treatment: evidence for a pre-CFU-S cell? Nature. 1979 Oct 4;281(5730):381–382. doi: 10.1038/281381a0. [DOI] [PubMed] [Google Scholar]
  10. Holmes K. L., Palaszynski E., Fredrickson T. N., Morse H. C., 3rd, Ihle J. N. Correlation of cell-surface phenotype with the establishment of interleukin 3-dependent cell lines from wild-mouse murine leukemia virus-induced neoplasms. Proc Natl Acad Sci U S A. 1985 Oct;82(19):6687–6691. doi: 10.1073/pnas.82.19.6687. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hünig T., Bevan M. J. Specificity of cytotoxic T cells from athymic mice. J Exp Med. 1980 Sep 1;152(3):688–702. doi: 10.1084/jem.152.3.688. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Ihle J. N., Keller J., Oroszlan S., Henderson L. E., Copeland T. D., Fitch F., Prystowsky M. B., Goldwasser E., Schrader J. W., Palaszynski E. Biologic properties of homogeneous interleukin 3. I. Demonstration of WEHI-3 growth factor activity, mast cell growth factor activity, p cell-stimulating factor activity, colony-stimulating factor activity, and histamine-producing cell-stimulating factor activity. J Immunol. 1983 Jul;131(1):282–287. [PubMed] [Google Scholar]
  13. Ihle J. N., Pepersack L., Rebar L. Regulation of T cell differentiation: in vitro induction of 20 alpha-hydroxysteroid dehydrogenase in splenic lymphocytes from athymic mice by a unique lymphokine. J Immunol. 1981 Jun;126(6):2184–2189. [PubMed] [Google Scholar]
  14. Ikuta K., Hattori M., Wake K., Kano S., Honjo T., Yodoi J., Minato N. Expression and rearrangement of the alpha, beta, and gamma chain genes of the T cell receptor in cloned murine large granular lymphocyte lines. No correlation with the cytotoxic spectrum. J Exp Med. 1986 Aug 1;164(2):428–442. doi: 10.1084/jem.164.2.428. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Jenkinson E. J., Kingston R., Owen J. J. Importance of IL-2 receptors in intra-thymic generation of cells expressing T-cell receptors. Nature. 1987 Sep 10;329(6135):160–162. doi: 10.1038/329160a0. [DOI] [PubMed] [Google Scholar]
  16. Kajigaya S., Suda T., Suda J., Saito M., Miura Y., Iizuka M., Kobayashi S., Minato N., Sudo T. A recombinant murine granulocyte/macrophage (GM) colony-stimulating factor derived from an inducer T cell line (IH5.5). Functional restriction to GM progenitor cells. J Exp Med. 1986 Oct 1;164(4):1102–1113. doi: 10.1084/jem.164.4.1102. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kishihara K., Yoshikai Y., Matsuzaki G., Mak T. W., Nomoto K. Functional alpha and beta T cell chain receptor messages can be detected in old but not in young athymic mice. Eur J Immunol. 1987 Apr;17(4):477–482. doi: 10.1002/eji.1830170407. [DOI] [PubMed] [Google Scholar]
  18. Koning F., Stingl G., Yokoyama W. M., Yamada H., Maloy W. L., Tschachler E., Shevach E. M., Coligan J. E. Identification of a T3-associated gamma delta T cell receptor on Thy-1+ dendritic epidermal Cell lines. Science. 1987 May 15;236(4803):834–837. doi: 10.1126/science.2883729. [DOI] [PubMed] [Google Scholar]
  19. Kruisbeek A. M., Davis M. L., Matis L. A., Longo D. L. Self-recognition specificity expressed by T cells from nude mice. Absence of detectable Ia-restricted T cells in nude mice that do exhibit self-K/D-restricted T cell responses. J Exp Med. 1984 Sep 1;160(3):839–857. doi: 10.1084/jem.160.3.839. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kuziel W. A., Takashima A., Bonyhadi M., Bergstresser P. R., Allison J. P., Tigelaar R. E., Tucker P. W. Regulation of T-cell receptor gamma-chain RNA expression in murine Thy-1+ dendritic epidermal cells. Nature. 1987 Jul 16;328(6127):263–266. doi: 10.1038/328263a0. [DOI] [PubMed] [Google Scholar]
  21. Lanier L. L., Weiss A. Presence of Ti (WT31) negative T lymphocytes in normal blood and thymus. Nature. 1986 Nov 20;324(6094):268–270. doi: 10.1038/324268a0. [DOI] [PubMed] [Google Scholar]
  22. Lee F., Yokota T., Otsuka T., Meyerson P., Villaret D., Coffman R., Mosmann T., Rennick D., Roehm N., Smith C. Isolation and characterization of a mouse interleukin cDNA clone that expresses B-cell stimulatory factor 1 activities and T-cell- and mast-cell-stimulating activities. Proc Natl Acad Sci U S A. 1986 Apr;83(7):2061–2065. doi: 10.1073/pnas.83.7.2061. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Loughran T. P., Jr, Hammond W. P., 4th Adult-onset cyclic neutropenia is a benign neoplasm associated with clonal proliferation of large granular lymphocytes. J Exp Med. 1986 Dec 1;164(6):2089–2094. doi: 10.1084/jem.164.6.2089. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Loughran T. P., Jr, Kadin M. E., Starkebaum G., Abkowitz J. L., Clark E. A., Disteche C., Lum L. G., Slichter S. J. Leukemia of large granular lymphocytes: association with clonal chromosomal abnormalities and autoimmune neutropenia, thrombocytopenia, and hemolytic anemia. Ann Intern Med. 1985 Feb;102(2):169–175. doi: 10.7326/0003-4819-102-2-169. [DOI] [PubMed] [Google Scholar]
  25. Minato N., Amagai T., Yodoi J., Diamanstein T., Kano S. Regulation of the growth and functions of cloned murine large granular lymphocyte lines by resident macrophages. J Exp Med. 1985 Oct 1;162(4):1161–1181. doi: 10.1084/jem.162.4.1161. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Nakanishi N., Maeda K., Ito K., Heller M., Tonegawa S. T gamma protein is expressed on murine fetal thymocytes as a disulphide-linked heterodimer. Nature. 1987 Feb 19;325(6106):720–723. doi: 10.1038/325720a0. [DOI] [PubMed] [Google Scholar]
  27. Palacios R., Henson G., Steinmetz M., McKearn J. P. Interleukin-3 supports growth of mouse pre-B-cell clones in vitro. Nature. 1984 May 10;309(5964):126–131. doi: 10.1038/309126a0. [DOI] [PubMed] [Google Scholar]
  28. Palacios R., Kiefer M., Brockhaus M., Karjalainen K., Dembić Z., Kisielow P., von Boehmer H. Molecular, cellular, and functional properties of bone marrow T lymphocyte progenitor clones. J Exp Med. 1987 Jul 1;166(1):12–32. doi: 10.1084/jem.166.1.12. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Romani N., Stingl G., Tschachler E., Witmer M. D., Steinman R. M., Shevach E. M., Schuler G. The Thy-1-bearing cell of murine epidermis. A distinctive leukocyte perhaps related to natural killer cells. J Exp Med. 1985 Jun 1;161(6):1368–1383. doi: 10.1084/jem.161.6.1368. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Suda T., Suda J., Ogawa M., Ihle J. N. Permissive role of interleukin 3 (IL-3) in proliferation and differentiation of multipotential hemopoietic progenitors in culture. J Cell Physiol. 1985 Aug;124(2):182–190. doi: 10.1002/jcp.1041240203. [DOI] [PubMed] [Google Scholar]
  31. Timonen T., Saksela E., Ranki A., Häyry P. Fractionation, morphological and functional characterization of effector cells responsible for human natural killer activity against cell-line targets. Cell Immunol. 1979 Nov;48(1):133–148. doi: 10.1016/0008-8749(79)90106-0. [DOI] [PubMed] [Google Scholar]
  32. Tutt M. M., Kuziel W. A., Hackett J., Jr, Bennett M., Tucker P. W., Kumar V. Murine natural killer cells do not express functional transcripts of the alpha-, beta-, or gamma-chain genes of the T cell receptor. J Immunol. 1986 Nov 1;137(9):2998–3001. [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES