Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1988 Mar 1;167(3):1003–1015. doi: 10.1084/jem.167.3.1003

A monoclonal antibody (3G5)-defined ganglioside antigen is expressed on the cell surface of microvascular pericytes

PMCID: PMC2188880  PMID: 3351433

Abstract

The identification of microvascular pericytes in vitro relies principally on morphological characteristics and growth dynamics, as there is a paucity of immunochemical markers for these cells. Consequently, an attempt was made to identify mAb reagents that would aid in both the rapid identification and enrichment of retinal capillary pericytes in vascular cell cultures. A panel of mAbs raised by xenogeneic immunization of mice with various tissues was screened for immunoreactivity with dissociated cultures of bovine retinal capillary pericytes. Two antibodies from the panel (3G5 and HISL-8) were seen to react with pericytes by indirect immunofluorescence. The mAb 3G5 was selected for further study. mAb 3G5 did not react with dissociated cultures of smooth muscle cells, endothelial cells, or retinal pigmented endothelial cells. The pericyte 3G5 antigen was insensitive to the action of trypsin; therefore, mAb 3G5 was used to selectively purify pericytes from trypsinized mixed retinal cell cultures by flow cytometry. 3G5+ pericytes (representing 8% of cells in a mixed retinal cell culture) were enriched at least nine-fold to represent greater than 70% of cells. The mAb 3G5 stained retinal capillaries in vivo with a fluorescence distribution consistent with pericyte staining. The 3G5 antigen of cultured pericytes was found to be a glycolipid of mobility intermediate between ganglioside markers GM1 and GM2.

Full Text

The Full Text of this article is available as a PDF (871.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Buzney S. M., Massicotte S. J., Hetu N., Zetter B. R. Retinal vascular endothelial cells and pericytes. Differential growth characteristics in vitro. Invest Ophthalmol Vis Sci. 1983 Apr;24(4):470–480. [PubMed] [Google Scholar]
  2. COGAN D. G., TOUSSAINT D., KUWABARA T. Retinal vascular patterns. IV. Diabetic retinopathy. Arch Ophthalmol. 1961 Sep;66:366–378. doi: 10.1001/archopht.1961.00960010368014. [DOI] [PubMed] [Google Scholar]
  3. Carson M. P., Haudenschild C. C. Microvascular endothelium and pericytes: high yield, low passage cultures. In Vitro Cell Dev Biol. 1986 Jun;22(6):344–354. doi: 10.1007/BF02623409. [DOI] [PubMed] [Google Scholar]
  4. Cogan D. G., Kuwabara T. The mural cell in perspective. Arch Ophthalmol. 1967 Aug;78(2):133–139. doi: 10.1001/archopht.1967.00980030135005. [DOI] [PubMed] [Google Scholar]
  5. Cohen M. P., Frank R. N., Khalifa A. A. Collagen production by cultured retinal capillary pericytes. Invest Ophthalmol Vis Sci. 1980 Jan;19(1):90–94. [PubMed] [Google Scholar]
  6. Eimoto T. Ultrastructure of an infantile hemangiopericytoma. Cancer. 1977 Nov;40(5):2161–2170. doi: 10.1002/1097-0142(197711)40:5<2161::aid-cncr2820400526>3.0.co;2-j. [DOI] [PubMed] [Google Scholar]
  7. Eisenbarth G. S., Oie H., Gazdar A., Chick W., Schultz J. A., Scearce R. M. Production of monoclonal antibodies reacting with rat islet cell membrane antigens. Diabetes. 1981 Mar;30(3):226–230. doi: 10.2337/diab.30.3.226. [DOI] [PubMed] [Google Scholar]
  8. Engerman R., Bloodworth J. M., Jr, Nelson S. Relationship of microvascular disease in diabetes to metabolic control. Diabetes. 1977 Aug;26(8):760–769. doi: 10.2337/diab.26.8.760. [DOI] [PubMed] [Google Scholar]
  9. Frank R. N., Dutta S., Mancini M. A. Pericyte coverage is greater in the retinal than in the cerebral capillaries of the rat. Invest Ophthalmol Vis Sci. 1987 Jul;28(7):1086–1091. [PubMed] [Google Scholar]
  10. Frank R. N., Kinsey V. E., Frank K. W., Mikus K. P., Randolph A. In vitro proliferation of endothelial cells from kitten retinal capillaries. Invest Ophthalmol Vis Sci. 1979 Nov;18(11):1195–1200. [PubMed] [Google Scholar]
  11. Gitlin J. D., D'Amore P. A. Culture of retinal capillary cells using selective growth media. Microvasc Res. 1983 Jul;26(1):74–80. doi: 10.1016/0026-2862(83)90056-0. [DOI] [PubMed] [Google Scholar]
  12. Hakomori S. Glycosphingolipids in cellular interaction, differentiation, and oncogenesis. Annu Rev Biochem. 1981;50:733–764. doi: 10.1146/annurev.bi.50.070181.003505. [DOI] [PubMed] [Google Scholar]
  13. Herman I. M., D'Amore P. A. Microvascular pericytes contain muscle and nonmuscle actins. J Cell Biol. 1985 Jul;101(1):43–52. doi: 10.1083/jcb.101.1.43. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Joyce N. C., DeCamilli P., Boyles J. Pericytes, like vascular smooth muscle cells, are immunocytochemically positive for cyclic GMP-dependent protein kinase. Microvasc Res. 1984 Sep;28(2):206–219. doi: 10.1016/0026-2862(84)90018-9. [DOI] [PubMed] [Google Scholar]
  15. Joyce N. C., Haire M. F., Palade G. E. Contractile proteins in pericytes. I. Immunoperoxidase localization of tropomyosin. J Cell Biol. 1985 May;100(5):1379–1386. doi: 10.1083/jcb.100.5.1379. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Joyce N. C., Haire M. F., Palade G. E. Contractile proteins in pericytes. II. Immunocytochemical evidence for the presence of two isomyosins in graded concentrations. J Cell Biol. 1985 May;100(5):1387–1395. doi: 10.1083/jcb.100.5.1387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. KUWABARA T., COGAN D. G. Retinal vascular patterns. VI. Mural cells of the retinal capillaries. Arch Ophthalmol. 1963 Apr;69:492–502. doi: 10.1001/archopht.1963.00960040498013. [DOI] [PubMed] [Google Scholar]
  18. KUWABARA T., COGAN D. G. Studies of retinal vascular patterns. I. Normal architecture. Arch Ophthalmol. 1960 Dec;64:904–911. doi: 10.1001/archopht.1960.01840010906012. [DOI] [PubMed] [Google Scholar]
  19. Maciag T., Cerundolo J., Ilsley S., Kelley P. R., Forand R. An endothelial cell growth factor from bovine hypothalamus: identification and partial characterization. Proc Natl Acad Sci U S A. 1979 Nov;76(11):5674–5678. doi: 10.1073/pnas.76.11.5674. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Magnani J. L., Brockhaus M., Smith D. F., Ginsburg V. Detection of glycolipid ligands by direct binding of carbohydrate-binding proteins to thin-layer chromatograms. Methods Enzymol. 1982;83:235–241. doi: 10.1016/0076-6879(82)83016-4. [DOI] [PubMed] [Google Scholar]
  21. Nayak R. C., Omar M. A., Rabizadeh A., Srikanta S., Eisenbarth G. S. "Cytoplasmic" islet cell antibodies. Evidence that the target antigen is a sialoglycoconjugate. Diabetes. 1985 Jun;34(6):617–619. doi: 10.2337/diab.34.6.617. [DOI] [PubMed] [Google Scholar]
  22. Page I. H., Green J. G., Robertson A. L. The physician's incompleat guide to atherosclerosis. Ann Intern Med. 1966 Jan;64(1):189–203. doi: 10.7326/0003-4819-64-1-189. [DOI] [PubMed] [Google Scholar]
  23. Powers A. C., Rabizadeh A., Akeson R., Eisenbarth G. S. Characterization of monoclonal antibody 3G5 and utilization of this antibody to immobilize pancreatic islet cell gangliosides in a solid phase radioassay. Endocrinology. 1984 Apr;114(4):1338–1343. doi: 10.1210/endo-114-4-1338. [DOI] [PubMed] [Google Scholar]
  24. Rabinowe S. L., Nayak R. C., Krisch K., George K. L., Eisenbarth G. S. Aging in man. Linear increase of a novel T cell subset defined by antiganglioside monoclonal antibody 3G5. J Exp Med. 1987 May 1;165(5):1436–1441. doi: 10.1084/jem.165.5.1436. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Rhodin J. A. Ultrastructure of mammalian venous capillaries, venules, and small collecting veins. J Ultrastruct Res. 1968 Dec;25(5):452–500. doi: 10.1016/s0022-5320(68)80098-x. [DOI] [PubMed] [Google Scholar]
  26. SVENNERHOLM L. CHROMATOGRAPHIC SEPARATION OF HUMAN BRAIN GANGLIOSIDES. J Neurochem. 1963 Sep;10:613–623. doi: 10.1111/j.1471-4159.1963.tb08933.x. [DOI] [PubMed] [Google Scholar]
  27. Speiser P., Gittelsohn A. M., Patz A. Studies on diabetic retinopathy. 3. Influence of diabetes on intramural pericytes. Arch Ophthalmol. 1968 Sep;80(3):332–337. doi: 10.1001/archopht.1968.00980050334007. [DOI] [PubMed] [Google Scholar]
  28. Srikanta S., Eisenbarth G. S. Islet cell antigens. Initial studies of their biology and function. Mol Biol Med. 1986 Apr;3(2):113–127. [PubMed] [Google Scholar]
  29. Srikanta S., Telen M., Posillico J. T., Dolinar R., Krisch K., Haynes B. F., Eisenbarth G. S. Monoclonal antibodies to a human islet cell surface glycoprotein: 4F2 and LC7-2. Endocrinology. 1987 Jun;120(6):2240–2244. doi: 10.1210/endo-120-6-2240. [DOI] [PubMed] [Google Scholar]
  30. Svennerholm L., Fredman P. A procedure for the quantitative isolation of brain gangliosides. Biochim Biophys Acta. 1980 Jan 18;617(1):97–109. doi: 10.1016/0005-2760(80)90227-1. [DOI] [PubMed] [Google Scholar]
  31. Tilton R. G., Kilo C., Williamson J. R., Murch D. W. Differences in pericyte contractile function in rat cardiac and skeletal muscle microvasculatures. Microvasc Res. 1979 Nov;18(3):336–352. doi: 10.1016/0026-2862(79)90042-6. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES