Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1988 Apr 1;167(4):1296–1312. doi: 10.1084/jem.167.4.1296

Clonotypic heterogeneity in experimental interstitial nephritis. Restricted specificity of the anti-tubular basement membrane B cell repertoire is associated with a disease-modifying crossreactive idiotype

PMCID: PMC2188927  PMID: 3128629

Abstract

Experimental anti-tubular basement membrane (anti-TBM) disease is an autoimmune interstitial nephritis elicited in susceptible rodents after immunization with renal tubular antigen. The nephritogenic antigen in the immunizing preparation is 3M-1, a 48,000 Mr noncollagenous glycoprotein. The hallmarks of the renal lesion are the presence of anti-TBM antibodies (anti-TBM-Ab) and a dense mononuclear cell infiltrate. The anti-TBM B cell repertoire in this disease was analyzed using a library of 22 anti-TBM mAbs generated in a prototypically susceptible Brown Norway rat. These anti-TBM mAbs were all demonstrated to be 3M-1 specific and their characterization formed the basis for the following observations: (a) The size of the anti-TBM B cell population is estimated at 58 distinct clones; (b) by competitive inhibition criteria, all anti-TBM mAbs recognize the same (or spatially close) epitope(s) on 3M-1. This focused recognition was maintained in spite of considerable variability in affinity. Epitopic dominance could also be demonstrated in human polyclonal anti-TBM antisera from a patient with anti-TBM disease; and (c) a crossreactive idiotype was documented, and antisera directed toward this set of variable region determinants was shown to be effective as a prophylactic regimen to abrogate disease, and as a therapeutic modality to arrest the progression of disease; (d) analysis of VH gene families suggested biased usage of Q52- and 7183- like families, although at least three gene families are used in the anti-TBM-Ab response. Thus, the anti-TBM B cell compartment in BN rats is moderately large, but is primarily focused to a single epitope on the nephritogenic antigen and is associated with a disease-modifying crossreactive idiotype.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arant S. E., Griffin J. A., Koopman W. J. VH gene expression is restricted in anti-IgG antibodies from MRL autoimmune mice. J Exp Med. 1986 Oct 1;164(4):1284–1300. doi: 10.1084/jem.164.4.1284. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Auffray C., Rougeon F. Purification of mouse immunoglobulin heavy-chain messenger RNAs from total myeloma tumor RNA. Eur J Biochem. 1980 Jun;107(2):303–314. doi: 10.1111/j.1432-1033.1980.tb06030.x. [DOI] [PubMed] [Google Scholar]
  3. Bellon B., Manheimer-Lory A., Monestier M., Moran T., Dimitriu-Bona A., Alt F., Bona C. High frequency of autoantibodies bearing cross-reactive idiotopes among hybridomas using VH7183 genes prepared from normal and autoimmune murine strains. J Clin Invest. 1987 Apr;79(4):1044–1053. doi: 10.1172/JCI112917. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bergstein J., Litman N. Interstitial nephritis with anti-tubular-basement-membrane antibody. N Engl J Med. 1975 Apr 24;292(17):875–878. doi: 10.1056/NEJM197504242921701. [DOI] [PubMed] [Google Scholar]
  5. Border W. A., Lehman D. H., Egan J. D., Sass H. J., Glode J. E., Wilson C. B. Antitubular basement-membrane antibodies in methicillin-associated interstitial nephritis. N Engl J Med. 1974 Aug 22;291(8):381–384. doi: 10.1056/NEJM197408222910803. [DOI] [PubMed] [Google Scholar]
  6. Briles D. E., Carroll R. J. A simple method for estimating the probable numbers of different antibodies by examining the repeat frequencies of sequences or isoelectric focusing patterns. Mol Immunol. 1981 Jan;18(1):29–38. doi: 10.1016/0161-5890(81)90045-6. [DOI] [PubMed] [Google Scholar]
  7. Brodeur P. H., Riblet R. The immunoglobulin heavy chain variable region (Igh-V) locus in the mouse. I. One hundred Igh-V genes comprise seven families of homologous genes. Eur J Immunol. 1984 Oct;14(10):922–930. doi: 10.1002/eji.1830141012. [DOI] [PubMed] [Google Scholar]
  8. Brown C. A., Carey K., Colvin R. B. Inhibition of autoimmune tubulointerstitial nephritis in guinea pigs by heterologous antisera containing anti-idiotype antibodies. J Immunol. 1979 Nov;123(5):2102–2107. [PubMed] [Google Scholar]
  9. Chirgwin J. M., Przybyla A. E., MacDonald R. J., Rutter W. J. Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry. 1979 Nov 27;18(24):5294–5299. doi: 10.1021/bi00591a005. [DOI] [PubMed] [Google Scholar]
  10. Clayman M. D., Martinez-Hernandez A., Michaud L., Alper R., Mann R., Kefalides N. A., Neilson E. G. Isolation and characterization of the nephritogenic antigen producing anti-tubular basement membrane disease. J Exp Med. 1985 Feb 1;161(2):290–305. doi: 10.1084/jem.161.2.290. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Clayman M. D., Michaud L., Brentjens J., Andres G. A., Kefalides N. A., Neilson E. G. Isolation of the target antigen of human anti-tubular basement membrane antibody-associated interstitial nephritis. J Clin Invest. 1986 Apr;77(4):1143–1147. doi: 10.1172/JCI112414. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Eichmann K. Idiotype suppression. I. Influence of the dose and of the effector functions of anti-idiotypic antibody on the production of an idiotype. Eur J Immunol. 1974 Apr;4(4):296–302. doi: 10.1002/eji.1830040413. [DOI] [PubMed] [Google Scholar]
  13. Frankel M. E., Gerhard W. The rapid determination of binding constants for antiviral antibodies by a radioimmunoassay. An analysis of the interaction between hybridoma proteins and influenza virus. Mol Immunol. 1979 Feb;16(2):101–106. doi: 10.1016/0161-5890(79)90051-8. [DOI] [PubMed] [Google Scholar]
  14. Giulian G. G., Moss R. L., Greaser M. Analytical isoelectric focusing using a high-voltage vertical slab polyacrylamide gel system. Anal Biochem. 1984 Nov 1;142(2):421–436. doi: 10.1016/0003-2697(84)90486-x. [DOI] [PubMed] [Google Scholar]
  15. Hahn B. H., Ebling F. M. Suppression of NZB/NZW murine nephritis by administration of a syngeneic monoclonal antibody to DNA. Possible role of anti-idiotypic antibodies. J Clin Invest. 1983 Jun;71(6):1728–1736. doi: 10.1172/JCI110927. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hart D. A., Wang A. L., Pawlak L. L., Nisonoff A. Suppression of idiotypic specificities in adult mice by administration of antiidiotypic antibody. J Exp Med. 1972 Jun 1;135(6):1293–1300. doi: 10.1084/jem.135.6.1293. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hart D. N., Fabre J. W. Kidney-specific alloantigen system in the rat. Characterization and role in transplantation. J Exp Med. 1980 Mar 1;151(3):651–666. doi: 10.1084/jem.151.3.651. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Klassen J., Kano K., Milgrom F., Menno A. B., Anthone S., Anthone R., Sepulveda M., Elwood C. M., Andres G. A. Tubular lesions produced by autoantibodies to tubular basement membrane in human renal allografts. Int Arch Allergy Appl Immunol. 1973;45(5):675–689. doi: 10.1159/000231067. [DOI] [PubMed] [Google Scholar]
  19. Lutz C. T., Bartholow T. L., Greenspan N. S., Fulton R. J., Monafo W. J., Perlmutter R. M., Huang H. V., Davie J. M. Molecular dissection of the murine antibody response to streptococcal group A carbohydrate. J Exp Med. 1987 Feb 1;165(2):531–545. doi: 10.1084/jem.165.2.531. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Manheimer-Lory A. J., Monestier M., Bellon B., Alt F. W., Bona C. A. Fine specificity, idiotypy, and nature of cloned heavy-chain variable region genes of murine monoclonal rheumatoid factor antibodies. Proc Natl Acad Sci U S A. 1986 Nov;83(21):8293–8297. doi: 10.1073/pnas.83.21.8293. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Marion T. N., Lawton A. R., 3rd, Kearney J. F., Briles D. E. Anti-DNA autoantibodies in (NZB X NZW)F1 mice are clonally heterogeneous, but the majority share a common idiotype. J Immunol. 1982 Feb;128(2):668–674. [PubMed] [Google Scholar]
  22. Monestier M., Manheimer-Lory A., Bellon B., Painter C., Dang H., Talal N., Zanetti M., Schwartz R., Pisetsky D., Kuppers R. Shared idiotypes and restricted immunoglobulin variable region heavy chain genes characterize murine autoantibodies of various specificities. J Clin Invest. 1986 Sep;78(3):753–759. doi: 10.1172/JCI112637. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Neilson E. G., Gasser D. L., McCafferty E., Zakheim B., Phillips S. M. Polymorphism of genes involved in anti-tubular basement membrane disease in rats. Immunogenetics. 1983;17(1):55–65. doi: 10.1007/BF00364289. [DOI] [PubMed] [Google Scholar]
  24. Neilson E. G., McCafferty E., Mann R., Michaud L., Clayman M. Murine interstitial nephritis. III. The selection of phenotypic (Lyt and L3T4) and idiotypic (RE-Id) T cell preferences by genes in Igh-1 and H-2K characterizes the cell-mediated potential for disease expression: susceptible mice provide a unique effector T cell repertoire in response to tubular antigen. J Immunol. 1985 Apr;134(4):2375–2382. [PubMed] [Google Scholar]
  25. Neilson E. G., McCafferty E., Phillips S. M., Clayman M. D., Kelly C. J. Antiidiotypic immunity in interstitial nephritis. II. Rats developing anti-tubular basement membrane disease fail to make an antiidiotypic regulatory response: the modulatory role of an RT7.1+, OX8- suppressor T cell mechanism. J Exp Med. 1984 Apr 1;159(4):1009–1026. doi: 10.1084/jem.159.4.1009. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Neilson E. G., Phillips M. Suppression of interstitial nephritis by auto-anti-idiotypic immunity. J Exp Med. 1982 Jan 1;155(1):179–189. doi: 10.1084/jem.155.1.179. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Neilson E. G., Phillips S. M. Cell-mediated immunity in interstitial nephritis. I. T lymphocyte systems in nephritic guinea pigs: the natural history and diversity of the immune response. J Immunol. 1979 Nov;123(5):2373–2380. [PubMed] [Google Scholar]
  28. Nicolotti R. A., Briles D. E., Schroer J. A., Davie J. M. Isoelectric focusing of immunoglobulins: improved methodology. J Immunol Methods. 1980;33(2):101–115. doi: 10.1016/s0022-1759(80)80001-9. [DOI] [PubMed] [Google Scholar]
  29. Nielson E. G., Phillips S. M., Jimenez S. Lymphokine modulation of fibroblast proliferation. J Immunol. 1982 Mar;128(3):1484–1486. [PubMed] [Google Scholar]
  30. Rudofsky U. H. Studies on the pathogenesis of experimental autoimmune renal tubulointerstitial disease in guinea-pigs. III. The role of adjuvants in the induction of disease. Clin Exp Immunol. 1976 Sep;25(3):455–461. [PMC free article] [PubMed] [Google Scholar]
  31. Shlomchik M., Nemazee D., van Snick J., Weigert M. Variable region sequences of murine IgM anti-IgG monoclonal autoantibodies (rheumatoid factors). II. Comparison of hybridomas derived by lipopolysaccharide stimulation and secondary protein immunization. J Exp Med. 1987 Apr 1;165(4):970–987. doi: 10.1084/jem.165.4.970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Sigal N. H., Klinman N. R. The B-cell clonotype repertoire. Adv Immunol. 1978;26:255–337. doi: 10.1016/s0065-2776(08)60232-1. [DOI] [PubMed] [Google Scholar]
  33. Trepicchio W., Jr, Barrett K. J. Eleven MRL-lpr/lpr anti-DNA autoantibodies are encoded by genes from four VH gene families: a potentially biased usage of VH genes. J Immunol. 1987 Apr 1;138(7):2323–2331. [PubMed] [Google Scholar]
  34. Zanetti M., De Baets M., Rogers J. High degree of idiotypic cross-reactivity among murine monoclonal antibodies to thyroglobulin. J Immunol. 1983 Nov;131(5):2452–2457. [PubMed] [Google Scholar]
  35. Zanetti M., Glotz D., Rogers J. Perturbation of the autoimmune network. II. Immunization with isologous idiotype induces auto-anti-idiotypic antibodies and suppresses the autoantibody response elicited by antigen: a serologic and cellular analysis. J Immunol. 1986 Nov 15;137(10):3140–3146. [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES