Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1988 Jul 1;168(1):13–24. doi: 10.1084/jem.168.1.13

Human cytolytic cell clones lacking surface expression of T cell receptor alpha/beta or gamma/delta. Evidence that surface structures other than CD3 or CD2 molecules are required for signal transduction

PMCID: PMC2188963  PMID: 3260936

Abstract

We have analyzed the transmembrane signaling operating in human cytolytic lymphocytes lacking surface expression of the CD3/TCR complex. Peripheral blood lymphocytes were fractionated into CD3+ and CD3- on the FACS and cloned under limiting conditions in the presence of PHA and IL-2. Approximately 90% CD3+ and 10% CD3- cells underwent clonal expansion. Clones obtained from the CD3- fraction belonged to two main phenotypic groups: CD2+ CD7+ and CD2- CD7+. Several clones were expanded and analyzed for surface phenotype and function. All of the five clones selected for detailed analysis did not express CD4, CD8, and CD28 antigens and did not release IL-2, whereas they displayed cytolytic activity against NK-sensitive, NK-resistant, and fresh tumor target cells. After stimulation with anti-CD2 mAbs or PHA a rapid increase in [Ca2+]i was detected in CD3- CD2+ CD7+ clones. This increment was caused by the release of Ca2+ from intracellular stores and by the influx from the extracellular compartment. Signaling in response to PHA did not appear to be dependent upon surface expression of CD2 molecules since antibody-induced modulation of CD2 did not prevent PHA-induced signal transduction. Similarly, in CD3- CD2- CD7+ clones [Ca2+]i increments and inositol phosphate formation occurred after stimulation with PHA. These data indicate that the functional PHA- binding structures, expressed in both groups of CD3- clones, are distinct from CD3/TCR complex and CD2 molecules.

Full Text

The Full Text of this article is available as a PDF (811.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alcover A., Weiss M. J., Daley J. F., Reinherz E. L. The T11 glycoprotein is functionally linked to a calcium channel in precursor and mature T-lineage cells. Proc Natl Acad Sci U S A. 1986 Apr;83(8):2614–2618. doi: 10.1073/pnas.83.8.2614. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Brenner M. B., Trowbridge I. S., Strominger J. L. Cross-linking of human T cell receptor proteins: association between the T cell idiotype beta subunit and the T3 glycoprotein heavy subunit. Cell. 1985 Jan;40(1):183–190. doi: 10.1016/0092-8674(85)90321-6. [DOI] [PubMed] [Google Scholar]
  3. Chilson O. P., Boylston A. W., Crumpton M. J. Phaseolus vulgaris phytohaemagglutinin (PHA) binds to the human T lymphocyte antigen receptor. EMBO J. 1984 Dec 20;3(13):3239–3245. doi: 10.1002/j.1460-2075.1984.tb02285.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Ferrini S., Moretta L., Pantaleo G., Moretta A. Surface markers of human lymphokine-activated killer cells and their precursors. Analysis at the population and clonal level. Int J Cancer. 1987 Jan 15;39(1):18–24. doi: 10.1002/ijc.2910390105. [DOI] [PubMed] [Google Scholar]
  5. Grynkiewicz G., Poenie M., Tsien R. Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem. 1985 Mar 25;260(6):3440–3450. [PubMed] [Google Scholar]
  6. Imboden J. B., Stobo J. D. Transmembrane signalling by the T cell antigen receptor. Perturbation of the T3-antigen receptor complex generates inositol phosphates and releases calcium ions from intracellular stores. J Exp Med. 1985 Mar 1;161(3):446–456. doi: 10.1084/jem.161.3.446. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Lanier L. L., Weiss A. Presence of Ti (WT31) negative T lymphocytes in normal blood and thymus. Nature. 1986 Nov 20;324(6094):268–270. doi: 10.1038/324268a0. [DOI] [PubMed] [Google Scholar]
  8. Mantovani A., Allavena P., Sessa C., Bolis G., Mangioni C. Natural killer activity of lymphoid cells isolated from human ascitic ovarian tumors. Int J Cancer. 1980 May 15;25(5):573–582. doi: 10.1002/ijc.2910250505. [DOI] [PubMed] [Google Scholar]
  9. Meuer S. C., Fitzgerald K. A., Hussey R. E., Hodgdon J. C., Schlossman S. F., Reinherz E. L. Clonotypic structures involved in antigen-specific human T cell function. Relationship to the T3 molecular complex. J Exp Med. 1983 Feb 1;157(2):705–719. doi: 10.1084/jem.157.2.705. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Meuer S. C., Hodgdon J. C., Hussey R. E., Protentis J. P., Schlossman S. F., Reinherz E. L. Antigen-like effects of monoclonal antibodies directed at receptors on human T cell clones. J Exp Med. 1983 Sep 1;158(3):988–993. doi: 10.1084/jem.158.3.988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Meuer S. C., Hussey R. E., Fabbi M., Fox D., Acuto O., Fitzgerald K. A., Hodgdon J. C., Protentis J. P., Schlossman S. F., Reinherz E. L. An alternative pathway of T-cell activation: a functional role for the 50 kd T11 sheep erythrocyte receptor protein. Cell. 1984 Apr;36(4):897–906. doi: 10.1016/0092-8674(84)90039-4. [DOI] [PubMed] [Google Scholar]
  12. Moretta A., Pantaleo G., Lopez-Botet M., Moretta L. Selection and characterization of monoclonal antibodies to the idiotype-like structure of an interleukin-2-producing human leukemia T-cell line. Int J Cancer. 1985 Aug 15;36(2):253–259. doi: 10.1002/ijc.2910360219. [DOI] [PubMed] [Google Scholar]
  13. Moretta A., Pantaleo G., Moretta L., Mingari M. C., Cerottini J. C. Quantitative assessment of the pool size and subset distribution of cytolytic T lymphocytes within human resting or alloactivated peripheral blood T cell populations. J Exp Med. 1983 Aug 1;158(2):571–585. doi: 10.1084/jem.158.2.571. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Moretta A., Poggi A., Olive D., Bottino C., Fortis C., Pantaleo G., Moretta L. Selection and characterization of T-cell variants lacking molecules involved in T-cell activation (T3 T-cell receptor, T44, and T11): analysis of the functional relationship among different pathways of activation. Proc Natl Acad Sci U S A. 1987 Mar;84(6):1654–1658. doi: 10.1073/pnas.84.6.1654. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. O'Flynn K., Krensky A. M., Beverley P. C., Burakoff S. J., Linch D. C. Phytohaemagglutinin activation of T cells through the sheep red blood cell receptor. Nature. 1985 Feb 21;313(6004):686–687. doi: 10.1038/313686a0. [DOI] [PubMed] [Google Scholar]
  16. Olive D., Ragueneau M., Cerdan C., Dubreuil P., Lopez M., Mawas C. Anti-CD2 (sheep red blood cell receptor) monoclonal antibodies and T cell activation. I. Pairs of anti-T11.1 and T11.2 (CD2 subgroups) are strongly mitogenic for T cells in presence of 12-O-tetradecanoylphorbol 13-acetate. Eur J Immunol. 1986 Sep;16(9):1063–1068. doi: 10.1002/eji.1830160906. [DOI] [PubMed] [Google Scholar]
  17. Palacios R. Mechanism of T cell activation: role and functional relationship of HLA-DR antigens and interleukins. Immunol Rev. 1982;63:73–110. doi: 10.1111/j.1600-065x.1982.tb00412.x. [DOI] [PubMed] [Google Scholar]
  18. Pantaleo G., Olive D., Poggi A., Kozumbo W. J., Moretta L., Moretta A. Transmembrane signalling via the T11-dependent pathway of human T cell activation. Evidence for the involvement of 1,2-diacylglycerol and inositol phosphates. Eur J Immunol. 1987 Jan;17(1):55–60. doi: 10.1002/eji.1830170110. [DOI] [PubMed] [Google Scholar]
  19. Pantaleo G., Olive D., Poggi A., Pozzan T., Moretta L., Moretta A. Antibody-induced modulation of the CD3/T cell receptor complex causes T cell refractoriness by inhibiting the early metabolic steps involved in T cell activation. J Exp Med. 1987 Aug 1;166(2):619–624. doi: 10.1084/jem.166.2.619. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Poggi A., Bottino C., Zocchi M. R., Pantaleo G., Ciccone E., Mingari C., Moretta L., Moretta A. CD3+ WT31- peripheral T lymphocytes lack T44 (CD28), a surface molecule involved in activation of T cells bearing the alpha/beta heterodimer. Eur J Immunol. 1987 Jul;17(7):1065–1068. doi: 10.1002/eji.1830170725. [DOI] [PubMed] [Google Scholar]
  21. Weiss A., Imboden J., Shoback D., Stobo J. Role of T3 surface molecules in human T-cell activation: T3-dependent activation results in an increase in cytoplasmic free calcium. Proc Natl Acad Sci U S A. 1984 Jul;81(13):4169–4173. doi: 10.1073/pnas.81.13.4169. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Weiss M. J., Daley J. F., Hodgdon J. C., Reinherz E. L. Calcium dependency of antigen-specific (T3-Ti) and alternative (T11) pathways of human T-cell activation. Proc Natl Acad Sci U S A. 1984 Nov;81(21):6836–6840. doi: 10.1073/pnas.81.21.6836. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES