Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1988 Jul 1;168(1):1–11. doi: 10.1084/jem.168.1.1

A monoclonal antibody specific for a common determinant of the human T cell receptor gamma/delta directly activates CD3+WT31- lymphocytes to express their functional program(s)

PMCID: PMC2188975  PMID: 2456364

Abstract

In an attempt to select mAbs specific for human TCR-gamma/delta, a polyclonal CD3+ 4-8-WT31- (TCR-gamma/delta+) cell line (MV1) was used for mice immunization. An mAb, termed BB3, reacted with MV1 cells but not with a large panel of CD3+ WT31+ (TCR-alpha/beta+) cell populations or clones. In addition, BB3 mAb reacted with the majority of CD3+ WT31- clones derived from six different donors. Double-color fluorescence experiments and FACS analysis showed that BB3+ cells were restricted to the CD3+ fraction of peripheral blood lymphocytes; in addition, in several donors the percentages (0.5-8% of total PBL) of BB3+ cells paralleled those of CD3+ WT31- cells. Surface molecules recognized by BB3 were susceptible to antibody-induced modulation; in addition, cell treatment with either BB3 or anti-CD3 mAb caused the simultaneous downregulation of the two molecules. That BB3 molecules are physically linked to CD3 antigen was further supported by immunoprecipitation experiments. Thus, under conditions that preserve the TCR-CD3 association, both BB3 and anti-CD3 mAb precipitated from 125I-labeled MV1 cells the same set of molecules. These consisted in the 18-28-kD CD3 molecules and in three bands of approximately 44, 42, and 38 kD under reducing conditions. When cell lysis was performed in 1% NP-40, the molecules immunoprecipitated by BB3 mAb were represented by an 80- kD band under nonreducing conditions, which resolved, under reducing conditions, in the three 44-, 42-, and 38-kD bands. Similar disulphide- linked forms of the TCR molecules were revealed in all of the other eight CD3+ WT31- BB3+ clones analyzed. Analysis of TCR molecules by electrophoresis (NEPHGE) showed that BB3 or anti-CD3 precipitated a 44- kD molecule displaying a basic PI (approximately 7.5) and two more acidic proteins (PI approximately 6) with a mol mass of 42 and 38 kD. Studies aimed to define whether stimuli directly acting on TCR- gamma/delta could induce CD3+ WT31- cell activation revealed that (a) In the presence of PMA, soluble BB3 mAb induced IL-2 production by MV1 cell line and by three other CD3+ WT31- BB3+ clones analyzed. (b) BB3 mAb-producing hybridoma used as triggering target, was efficiently lysed by CD3+ WT31- BB3+ effector cells (but not by CD3+ WT31+ BB3- conventional CTL). (c) Soluble BB3 mAb induced CD3+ WT31- BB3+ effector cells to lyse the Fc receptor-positive P815 target cells. (d) BB3-TCR- gamma/delta interaction on CD3+ WT31- BB3+ cells induced a rapid increase of [Ca2+]i levels, similar to that observed in response to anti-CD3 mAbs.

Full Text

The Full Text of this article is available as a PDF (820.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Borst J., van de Griend R. J., van Oostveen J. W., Ang S. L., Melief C. J., Seidman J. G., Bolhuis R. L. A T-cell receptor gamma/CD3 complex found on cloned functional lymphocytes. Nature. 1987 Feb 19;325(6106):683–688. doi: 10.1038/325683a0. [DOI] [PubMed] [Google Scholar]
  2. Brenner M. B., McLean J., Dialynas D. P., Strominger J. L., Smith J. A., Owen F. L., Seidman J. G., Ip S., Rosen F., Krangel M. S. Identification of a putative second T-cell receptor. Nature. 1986 Jul 10;322(6075):145–149. doi: 10.1038/322145a0. [DOI] [PubMed] [Google Scholar]
  3. Brenner M. B., McLean J., Scheft H., Riberdy J., Ang S. L., Seidman J. G., Devlin P., Krangel M. S. Two forms of the T-cell receptor gamma protein found on peripheral blood cytotoxic T lymphocytes. Nature. 1987 Feb 19;325(6106):689–694. doi: 10.1038/325689a0. [DOI] [PubMed] [Google Scholar]
  4. Brenner M. B., Trowbridge I. S., Strominger J. L. Cross-linking of human T cell receptor proteins: association between the T cell idiotype beta subunit and the T3 glycoprotein heavy subunit. Cell. 1985 Jan;40(1):183–190. doi: 10.1016/0092-8674(85)90321-6. [DOI] [PubMed] [Google Scholar]
  5. Ferrini S., Bottino C., Biassoni R., Poggi A., Sekaly R. P., Moretta L., Moretta A. Characterization of CD3+, CD4-, CD8- clones expressing the putative T cell receptor gamma gene product. Analysis of the activation pathways leading to interleukin 2 production and triggering of the lytic machinery. J Exp Med. 1987 Jul 1;166(1):277–282. doi: 10.1084/jem.166.1.277. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Fleischer B. Lysis of bystander target cells after triggering of human cytotoxic T lymphocytes. Eur J Immunol. 1986 Aug;16(8):1021–1024. doi: 10.1002/eji.1830160826. [DOI] [PubMed] [Google Scholar]
  7. Grynkiewicz G., Poenie M., Tsien R. Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem. 1985 Mar 25;260(6):3440–3450. [PubMed] [Google Scholar]
  8. Hubbard A. L., Cohn Z. A. Externally disposed plasma membrane proteins. I. Enzymatic iodination of mouse L cells. J Cell Biol. 1975 Feb;64(2):438–460. doi: 10.1083/jcb.64.2.438. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Jitsukawa S., Faure F., Lipinski M., Triebel F., Hercend T. A novel subset of human lymphocytes with a T cell receptor-gamma complex. J Exp Med. 1987 Oct 1;166(4):1192–1197. doi: 10.1084/jem.166.4.1192. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  11. Lanier L. L., Federspiel N. A., Ruitenberg J. J., Phillips J. H., Allison J. P., Littman D., Weiss A. The T cell antigen receptor complex expressed on normal peripheral blood CD4-, CD8- T lymphocytes. A CD3-associated disulfide-linked gamma chain heterodimer. J Exp Med. 1987 Apr 1;165(4):1076–1094. doi: 10.1084/jem.165.4.1076. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Lanier L. L., Weiss A. Presence of Ti (WT31) negative T lymphocytes in normal blood and thymus. Nature. 1986 Nov 20;324(6094):268–270. doi: 10.1038/324268a0. [DOI] [PubMed] [Google Scholar]
  13. Meuer S. C., Fitzgerald K. A., Hussey R. E., Hodgdon J. C., Schlossman S. F., Reinherz E. L. Clonotypic structures involved in antigen-specific human T cell function. Relationship to the T3 molecular complex. J Exp Med. 1983 Feb 1;157(2):705–719. doi: 10.1084/jem.157.2.705. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Meuer S. C., Hussey R. E., Fabbi M., Fox D., Acuto O., Fitzgerald K. A., Hodgdon J. C., Protentis J. P., Schlossman S. F., Reinherz E. L. An alternative pathway of T-cell activation: a functional role for the 50 kd T11 sheep erythrocyte receptor protein. Cell. 1984 Apr;36(4):897–906. doi: 10.1016/0092-8674(84)90039-4. [DOI] [PubMed] [Google Scholar]
  15. Moingeon P., Ythier A., Goubin G., Faure F., Nowill A., Delmon L., Rainaud M., Forestier F., Daffos F., Bohuon C. A unique T-cell receptor complex expressed on human fetal lymphocytes displaying natural-killer-like activity. Nature. 1986 Oct 16;323(6089):638–640. doi: 10.1038/323638a0. [DOI] [PubMed] [Google Scholar]
  16. Moretta A. Frequency and surface phenotype of human T lymphocytes producing interleukin 2. Analysis by limiting dilution and cell cloning. Eur J Immunol. 1985 Feb;15(2):148–155. doi: 10.1002/eji.1830150208. [DOI] [PubMed] [Google Scholar]
  17. Moretta A., Olive D., Poggi A., Pantaleo G., Mawas C., Moretta L. Modulation of surface T11 molecules induced by monoclonal antibodies: analysis of the functional relationship between antigen-dependent and antigen-independent pathways of human T cell activation. Eur J Immunol. 1986 Nov;16(11):1427–1432. doi: 10.1002/eji.1830161118. [DOI] [PubMed] [Google Scholar]
  18. Moretta A., Pantaleo G., Lopez-Botet M., Moretta L. Selection and characterization of monoclonal antibodies to the idiotype-like structure of an interleukin-2-producing human leukemia T-cell line. Int J Cancer. 1985 Aug 15;36(2):253–259. doi: 10.1002/ijc.2910360219. [DOI] [PubMed] [Google Scholar]
  19. Moretta A., Pantaleo G., Moretta L., Cerottini J. C., Mingari M. C. Direct demonstration of the clonogenic potential of every human peripheral blood T cell. Clonal analysis of HLA-DR expression and cytolytic activity. J Exp Med. 1983 Feb 1;157(2):743–754. doi: 10.1084/jem.157.2.743. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Moretta A., Pantaleo G., Moretta L., Mingari M. C., Cerottini J. C. Quantitative assessment of the pool size and subset distribution of cytolytic T lymphocytes within human resting or alloactivated peripheral blood T cell populations. J Exp Med. 1983 Aug 1;158(2):571–585. doi: 10.1084/jem.158.2.571. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. O'Farrell P. Z., Goodman H. M., O'Farrell P. H. High resolution two-dimensional electrophoresis of basic as well as acidic proteins. Cell. 1977 Dec;12(4):1133–1141. doi: 10.1016/0092-8674(77)90176-3. [DOI] [PubMed] [Google Scholar]
  22. Pantaleo G., Ferrini S., Zocchi M. R., Bottino C., Biassoni R., Moretta L., Moretta A. Analysis of signal transducing mechanisms in CD3+ CD4- CD8- cells expressing the putative T cell receptor gamma gene product. J Immunol. 1987 Dec 1;139(11):3580–3584. [PubMed] [Google Scholar]
  23. Pantaleo G., Olive D., Harris D., Poggi A., Moretta L., Moretta A. Signal transducing mechanisms involved in human T cell activation via surface T44 molecules. Comparison with signals transduced via the T cell receptor complex. Eur J Immunol. 1986 Dec;16(12):1639–1642. doi: 10.1002/eji.1830161228. [DOI] [PubMed] [Google Scholar]
  24. Poggi A., Bottino C., Zocchi M. R., Pantaleo G., Ciccone E., Mingari C., Moretta L., Moretta A. CD3+ WT31- peripheral T lymphocytes lack T44 (CD28), a surface molecule involved in activation of T cells bearing the alpha/beta heterodimer. Eur J Immunol. 1987 Jul;17(7):1065–1068. doi: 10.1002/eji.1830170725. [DOI] [PubMed] [Google Scholar]
  25. Weiss A., Newton M., Crommie D. Expression of T3 in association with a molecule distinct from the T-cell antigen receptor heterodimer. Proc Natl Acad Sci U S A. 1986 Sep;83(18):6998–7002. doi: 10.1073/pnas.83.18.6998. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES