Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1988 Jul 1;168(1):375–387. doi: 10.1084/jem.168.1.375

Deferoxamine inhibition of malaria is independent of host iron status

PMCID: PMC2188983  PMID: 3294334

Abstract

The mechanism whereby deferoxamine (DF) inhibits the growth of malaria parasites was studied in rats infected with Plasmodium berghei. Peak parasitemia was 32.6% (day 14) in untreated controls and 0.15% (day 7) in rats receiving 0.33 mg/g in 8 hourly DF injections, subcutaneously. DF inhibition of parasite growth was achieved without any reduction in transferrin saturation or hemoglobin synthesis and with only a partial (56%) depletion of hepatic iron stores. Dietary iron depletion resulted in anemia (hematocrit 25 vs. 46%), microcytosis (MCV 54 vs. 60 fl), and reduced transferrin saturation (17 vs. 96%) without any effect on infection (peak parasitemia 30 vs. 36%). Similarly, parenteral iron loading with ferric citrate over 10 d (75 mg iron/kg) failed to aggravate infection. In a search for evidence of direct interaction between DF and parasitized erythrocytes, gel filtration and ultrafiltration was performed on hemolysates obtained from in vivo 59Fe- labeled parasitized erythrocytes. This showed that 1.1-1.9% of the intracellular radioiron was located in a chelatable, labile iron pool. Incubation of intact cells with 0-500 microM DF resulted in a proportional increase in intracellular iron chelation, and the chelation of all available labile intracellular iron was completed within 6 h. These observations indicate that the severity of P. berghei infection in rats and its in vivo suppression by DF are independent of host iron status and suggest that DF inhibition of malaria involves intracellular chelation of a labile iron pool in parasitized erythrocytes.

Full Text

The Full Text of this article is available as a PDF (845.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Byles A. B., D'sa A. Reduction of reaction due to iron dextran infusion using chloroquine. Br Med J. 1970 Sep 12;3(5723):625–627. doi: 10.1136/bmj.3.5723.625. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Clark I. A., Hunt N. H. Evidence for reactive oxygen intermediates causing hemolysis and parasite death in malaria. Infect Immun. 1983 Jan;39(1):1–6. doi: 10.1128/iai.39.1.1-6.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cook J. D., Hershko C., Finch C. A. Storage iron kinetics. V. Iron exchange in the rat. Br J Haematol. 1973 Dec;25(6):695–706. doi: 10.1111/j.1365-2141.1973.tb01782.x. [DOI] [PubMed] [Google Scholar]
  4. Eaton J. W., Eckman J. R., Berger E., Jacob H. S. Suppression of malaria infection by oxidant-sensitive host erythrocytes. Nature. 1976 Dec 23;264(5588):758–760. doi: 10.1038/264758a0. [DOI] [PubMed] [Google Scholar]
  5. Fritsch G., Jung A. 14C-desferrioxamine B: uptake into erythrocytes infected with Plasmodium falciparum. Z Parasitenkd. 1986;72(6):709–713. doi: 10.1007/BF00925092. [DOI] [PubMed] [Google Scholar]
  6. Fritsch G., Treumer J., Spira D. T., Jung A. Plasmodium vinckei: suppression of mouse infections with desferrioxamine B. Exp Parasitol. 1985 Oct;60(2):171–174. doi: 10.1016/0014-4894(85)90020-7. [DOI] [PubMed] [Google Scholar]
  7. Ginsburg H., Gorodetsky R., Krugliak M. The status of zinc in malaria (Plasmodium falciparum) infected human red blood cells: stage dependent accumulation, compartmentation and effect of dipicolinate. Biochim Biophys Acta. 1986 May 29;886(3):337–344. doi: 10.1016/0167-4889(86)90168-0. [DOI] [PubMed] [Google Scholar]
  8. Gutteridge J. M. Iron promoters of the Fenton reaction and lipid peroxidation can be released from haemoglobin by peroxides. FEBS Lett. 1986 Jun 9;201(2):291–295. doi: 10.1016/0014-5793(86)80626-3. [DOI] [PubMed] [Google Scholar]
  9. Haldar K., Henderson C. L., Cross G. A. Identification of the parasite transferrin receptor of Plasmodium falciparum-infected erythrocytes and its acylation via 1,2-diacyl-sn-glycerol. Proc Natl Acad Sci U S A. 1986 Nov;83(22):8565–8569. doi: 10.1073/pnas.83.22.8565. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Harvey P. W., Bell R. G., Nesheim M. C. Iron deficiency protects inbred mice against infection with Plasmodium chabaudi. Infect Immun. 1985 Dec;50(3):932–934. doi: 10.1128/iai.50.3.932-934.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hershko C., Cook J. D., Finch C. A. Storage iron kinetics. VI. The effect of inflammation on iron exchange in the rat. Br J Haematol. 1974 Sep;28(1):67–75. doi: 10.1111/j.1365-2141.1974.tb06640.x. [DOI] [PubMed] [Google Scholar]
  12. Huang A. R., Ponka P. A study of the mechanism of action of pyridoxal isonicotinoyl hydrazone at the cellular level using reticulocytes loaded with non-heme 59Fe. Biochim Biophys Acta. 1983 Jun 9;757(3):306–315. doi: 10.1016/0304-4165(83)90056-9. [DOI] [PubMed] [Google Scholar]
  13. Huebers H. A., Finch C. A. The physiology of transferrin and transferrin receptors. Physiol Rev. 1987 Apr;67(2):520–582. doi: 10.1152/physrev.1987.67.2.520. [DOI] [PubMed] [Google Scholar]
  14. Jacobs A. Low molecular weight intracellular iron transport compounds. Blood. 1977 Sep;50(3):433–439. [PubMed] [Google Scholar]
  15. Kochan I. The role of iron in bacterial infections, with special consideration of host-tubercle bacillus interaction. Curr Top Microbiol Immunol. 1973;60:1–30. doi: 10.1007/978-3-642-65502-9_1. [DOI] [PubMed] [Google Scholar]
  16. McGregor I. A. Malaria: nutritional implications. Rev Infect Dis. 1982 Jul-Aug;4(4):798–804. doi: 10.1093/4.4.798. [DOI] [PubMed] [Google Scholar]
  17. Murray M. J., Murray A. B., Murray M. B., Murray C. J. The adverse effect of iron repletion on the course of certain infections. Br Med J. 1978 Oct 21;2(6145):1113–1115. doi: 10.1136/bmj.2.6145.1113. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Nurse G. T. Iron, the thalassaemias, and malaria. Lancet. 1979 Nov 3;2(8149):938–940. [PubMed] [Google Scholar]
  19. Oppenheimer S. J., Gibson F. D., Macfarlane S. B., Moody J. B., Harrison C., Spencer A., Bunari O. Iron supplementation increases prevalence and effects of malaria: report on clinical studies in Papua New Guinea. Trans R Soc Trop Med Hyg. 1986;80(4):603–612. doi: 10.1016/0035-9203(86)90154-9. [DOI] [PubMed] [Google Scholar]
  20. Pasvol G., Weatherall D. J. The red cell and the malarial parasite. Br J Haematol. 1980 Oct;46(2):165–170. doi: 10.1111/j.1365-2141.1980.tb05955.x. [DOI] [PubMed] [Google Scholar]
  21. Peto T. E., Thompson J. L. A reappraisal of the effects of iron and desferrioxamine on the growth of Plasmodium falciparum 'in vitro': the unimportance of serum iron. Br J Haematol. 1986 Jun;63(2):273–280. doi: 10.1111/j.1365-2141.1986.tb05550.x. [DOI] [PubMed] [Google Scholar]
  22. Pollack S., Fleming J. Plasmodium falciparum takes up iron from transferrin. Br J Haematol. 1984 Oct;58(2):289–293. doi: 10.1111/j.1365-2141.1984.tb06087.x. [DOI] [PubMed] [Google Scholar]
  23. Pollack S. Malaria and iron. Br J Haematol. 1983 Feb;53(2):181–183. doi: 10.1111/j.1365-2141.1983.tb02009.x. [DOI] [PubMed] [Google Scholar]
  24. Pollack S., Rossan R. N., Davidson D. E., Escajadillo A. Desferrioxamine suppresses Plasmodium falciparum in Aotus monkeys. Proc Soc Exp Biol Med. 1987 Feb;184(2):162–164. doi: 10.3181/00379727-184-42461. [DOI] [PubMed] [Google Scholar]
  25. Pollack S., Schnelle V. Inability to detect transferrin receptors on P. falciparum parasitized red cells. Br J Haematol. 1988 Jan;68(1):125–129. doi: 10.1111/j.1365-2141.1988.tb04190.x. [DOI] [PubMed] [Google Scholar]
  26. Ponka P., Grady R. W., Wilczynska A., Schulman H. M. The effect of various chelating agents on the mobilization of iron from reticulocytes in the presence and absence of pyridoxal isonicotinoyl hydrazone. Biochim Biophys Acta. 1984 Dec 20;802(3):477–489. doi: 10.1016/0304-4165(84)90367-2. [DOI] [PubMed] [Google Scholar]
  27. Raventos-Suarez C., Pollack S., Nagel R. L. Plasmodium falciparum: inhibition of in vitro growth by desferrioxamine. Am J Trop Med Hyg. 1982 Sep;31(5):919–922. doi: 10.4269/ajtmh.1982.31.919. [DOI] [PubMed] [Google Scholar]
  28. Rodriguez M. H., Jungery M. A protein on Plasmodium falciparum-infected erythrocytes functions as a transferrin receptor. 1986 Nov 27-Dec 3Nature. 324(6095):388–391. doi: 10.1038/324388a0. [DOI] [PubMed] [Google Scholar]
  29. Scheibel L. W., Adler A. Antimalarial activity of selected aromatic chelators. Mol Pharmacol. 1980 Sep;18(2):320–325. [PubMed] [Google Scholar]
  30. Scheibel L. W., Stanton G. G. Antimalarial activity of selected aromatic chelators. IV. Cation uptake by Plasmodium falciparum in the presence of oxines and siderochromes. Mol Pharmacol. 1986 Oct;30(4):364–369. [PubMed] [Google Scholar]
  31. Torrance J. D., Bothwell T. H. A simple technique for measuring storage iron concentrations in formalinised liver samples. S Afr J Med Sci. 1968 Apr;33(1):9–11. [PubMed] [Google Scholar]
  32. Warner G. T., Oliver R. A whole-body counter for clinical measurements utilizing the 'shadow shield' technique. Phys Med Biol. 1966 Jan;11(1):83–94. doi: 10.1088/0031-9155/11/1/307. [DOI] [PubMed] [Google Scholar]
  33. Weinberg E. D. Iron and susceptibility to infectious disease. Science. 1974 May 31;184(4140):952–956. doi: 10.1126/science.184.4140.952. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES