Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1988 Jul 1;168(1):127–142. doi: 10.1084/jem.168.1.127

Human monoclonal IgG isotypes differ in complement activating function at the level of C4 as well as C1q

PMCID: PMC2188986  PMID: 3260935

Abstract

Humanized antibodies are likely to have a major role in therapy and it is important to define their interaction with physiological effectors. By comparing a matched series of chimeric human mAbs we found that igG1 was most efficient in complement lysis, although IgG3 bound more C1q. To resolve this paradox we compared the ability of human IgG1, IgG2, IgG3, IgG4, and IgE and rat IgG2b to cause C1q binding, C1 binding and activation, C4 activation, C4b binding, and C3b binding. Rat IgG2b was included because this isotype has already successfully been used for therapy. Human IgG1 was less efficient than IgG3 and fixing C1q and C1 on the cell surface, but the number of C4 molecules bound per C1 was 10- fold greater for IgG1 than for IgG3. This difference, amplified through later stages of the complement cascade, can account for the superiority of IgG1 for cell lysis. The efficiency of IgG1 in fixing C4 was not due to a favored binding site on the antibody molecule, since virtually all of the bound C4b was attached to the cells. Rather, it appeared that the activation of C4 by C1s was greatly favored by IgG1 compared with IgG3. It should be possible to combine the optimal properties of IgG1 and IgG3 antibodies to produce an improved therapeutic reagent.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Augener W., Grey H. M., Cooper N. R., Müller-Eberhard H. J. The reaction of monomeric and aggregated immunoglobulins with C1. Immunochemistry. 1971 Nov;8(11):1011–1020. doi: 10.1016/0019-2791(71)90489-7. [DOI] [PubMed] [Google Scholar]
  2. Beale D., Feinstein A. Structure and function of the constant regions of immunoglobulins. Q Rev Biophys. 1976 May;9(2):135–180. doi: 10.1017/s0033583500002390. [DOI] [PubMed] [Google Scholar]
  3. Bindon C. I., Hale G., Clark M., Waldmann H. Therapeutic potential of monoclonal antibodies to the leukocyte-common antigen. Synergy and interference in complement-mediated lysis. Transplantation. 1985 Nov;40(5):538–544. doi: 10.1097/00007890-198511000-00013. [DOI] [PubMed] [Google Scholar]
  4. Boulianne G. L., Hozumi N., Shulman M. J. Production of functional chimaeric mouse/human antibody. Nature. 1984 Dec 13;312(5995):643–646. doi: 10.1038/312643a0. [DOI] [PubMed] [Google Scholar]
  5. Brown E. J., Berger M., Joiner K. A., Frank M. M. Classical complement pathway activation by antipneumococcal antibodies leads to covalent binding of C3b to antibody molecules. Infect Immun. 1983 Nov;42(2):594–598. doi: 10.1128/iai.42.2.594-598.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Brunhouse R., Cebra J. J. Isotypes of IgG: comparison of the primary structures of three pairs of isotypes which differ in their ability to activate complement. Mol Immunol. 1979 Nov;16(11):907–917. doi: 10.1016/0161-5890(79)90089-0. [DOI] [PubMed] [Google Scholar]
  7. Brüggemann M., Free J., Diamond A., Howard J., Cobbold S., Waldmann H. Immunoglobulin heavy chain locus of the rat: striking homology to mouse antibody genes. Proc Natl Acad Sci U S A. 1986 Aug;83(16):6075–6079. doi: 10.1073/pnas.83.16.6075. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Brüggemann M., Rajewsky K. Regulation of the antibody response against hapten-coupled erythrocytes by monoclonal antihapten antibodies of various isotypes. Cell Immunol. 1982 Aug;71(2):365–373. doi: 10.1016/0008-8749(82)90270-2. [DOI] [PubMed] [Google Scholar]
  9. Brüggemann M., Williams G. T., Bindon C. I., Clark M. R., Walker M. R., Jefferis R., Waldmann H., Neuberger M. S. Comparison of the effector functions of human immunoglobulins using a matched set of chimeric antibodies. J Exp Med. 1987 Nov 1;166(5):1351–1361. doi: 10.1084/jem.166.5.1351. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Burton D. R., Boyd J., Brampton A. D., Easterbrook-Smith S. B., Emanuel E. J., Novotny J., Rademacher T. W., van Schravendijk M. R., Sternberg M. J., Dwek R. A. The Clq receptor site on immunoglobulin G. Nature. 1980 Nov 27;288(5789):338–344. doi: 10.1038/288338a0. [DOI] [PubMed] [Google Scholar]
  11. Burton D. R. Immunoglobulin G: functional sites. Mol Immunol. 1985 Mar;22(3):161–206. doi: 10.1016/0161-5890(85)90151-8. [DOI] [PubMed] [Google Scholar]
  12. Circolo A., Borsos T. C4 does not bind to human and rabbit IgM during activation of the classical complement pathway on the red cell. J Immunol. 1982 Oct;129(4):1485–1488. [PubMed] [Google Scholar]
  13. Circolo A., Borsos T. Lack of binding of C3 to IgG antibodies during the activation of the classical complement pathway on the red cell. Mol Immunol. 1984 Mar;21(3):191–195. doi: 10.1016/0161-5890(84)90073-7. [DOI] [PubMed] [Google Scholar]
  14. Colten H. R., Borsos T., Rapp H. J. Titration of the first component of complement on a molecular basis: suitability of IgM and unsuitability of IgG hemolysins as sensitizer. Immunochemistry. 1969 May;6(3):461–467. doi: 10.1016/0019-2791(69)90302-4. [DOI] [PubMed] [Google Scholar]
  15. Folkerd E. J., Gardner B., Hughes-Jones N. C. The relationship between the binding ability and the rate of activation of the complement component C1. Immunology. 1980 Sep;41(1):179–185. [PMC free article] [PubMed] [Google Scholar]
  16. Fraker P. J., Speck J. C., Jr Protein and cell membrane iodinations with a sparingly soluble chloroamide, 1,3,4,6-tetrachloro-3a,6a-diphrenylglycoluril. Biochem Biophys Res Commun. 1978 Feb 28;80(4):849–857. doi: 10.1016/0006-291x(78)91322-0. [DOI] [PubMed] [Google Scholar]
  17. Gadd K. J., Reid K. B. The binding of complement component C3 to antibody-antigen aggregates after activation of the alternative pathway in human serum. Biochem J. 1981 May 1;195(2):471–480. doi: 10.1042/bj1950471. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Goers J. W., Ziccardi R. J., Schumaker V. N., Glovsky M. M. The mechanism of activation of the first component of complement by a univalent hapten-IgG antibody complex. J Immunol. 1977 Jun;118(6):2182–2191. [PubMed] [Google Scholar]
  19. Hale G., Cobbold S. P., Waldmann H., Easter G., Matejtschuk P., Coombs R. R. Isolation of low-frequency class-switch variants from rat hybrid myelomas. J Immunol Methods. 1987 Oct 23;103(1):59–67. doi: 10.1016/0022-1759(87)90242-0. [DOI] [PubMed] [Google Scholar]
  20. Herlyn D., Koprowski H. IgG2a monoclonal antibodies inhibit human tumor growth through interaction with effector cells. Proc Natl Acad Sci U S A. 1982 Aug;79(15):4761–4765. doi: 10.1073/pnas.79.15.4761. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Heusser C., Boesman M., Nordin J. H., Isliker H. Effect of chemical and enzymatic radioiodination on in vitro human Clq activities. J Immunol. 1973 Mar;110(3):820–828. [PubMed] [Google Scholar]
  22. Houle J. J., Hoffmann E. M. Evidence for restriction of the ability of complement to lyse homologous erythrocytes. J Immunol. 1984 Sep;133(3):1444–1452. [PubMed] [Google Scholar]
  23. Hughes-Jones N. C. Functional affinity constants of the reaction between 125I-labelled C1q and C1q binders and their use in the measurement of plasma C1q concentrations. Immunology. 1977 Feb;32(2):191–198. [PMC free article] [PubMed] [Google Scholar]
  24. Hughes-Jones N. C., Gorick B. D., Howard J. C. The mechanism of synergistic complement-mediated lysis of rat red cells by monoclonal IgG antibodies. Eur J Immunol. 1983 Aug;13(8):635–641. doi: 10.1002/eji.1830130806. [DOI] [PubMed] [Google Scholar]
  25. Hughes-Jones N. C., Gorick B. D., Howard J. C. The mechanism of synergistic complement-mediated lysis of rat red cells by monoclonal IgG antibodies. Eur J Immunol. 1983 Aug;13(8):635–641. doi: 10.1002/eji.1830130806. [DOI] [PubMed] [Google Scholar]
  26. Hänsch G. M., Hammer C. H., Vanguri P., Shin M. L. Homologous species restriction in lysis of erythrocytes by terminal complement proteins. Proc Natl Acad Sci U S A. 1981 Aug;78(8):5118–5121. doi: 10.1073/pnas.78.8.5118. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Johnson R. J., Kaizer H., Massey A. G., Shin H. S. Role of endogenous complement in monoclonal IgM antibody-dependent leukemia suppression in vivo: participation of C3b. J Immunol. 1985 May;134(5):3497–3503. [PubMed] [Google Scholar]
  28. Lachmann P. J., Oldroyd R. G., Milstein C., Wright B. W. Three rat monoclonal antibodies to human C3. Immunology. 1980 Nov;41(3):503–515. [PMC free article] [PubMed] [Google Scholar]
  29. Law S. K., Minich T. M., Levine R. P. Binding reaction between the third human complement protein and small molecules. Biochemistry. 1981 Dec 22;20(26):7457–7463. doi: 10.1021/bi00529a020. [DOI] [PubMed] [Google Scholar]
  30. Leatherbarrow R. J., Dwek R. A. Binding of complement subcomponent C1q to mouse IgG1, IgG2a and IgG2b: a novel C1q binding assay. Mol Immunol. 1984 Apr;21(4):321–327. doi: 10.1016/0161-5890(84)90103-2. [DOI] [PubMed] [Google Scholar]
  31. Lukas T. J., Muñoz H., Erickson B. W. Inhibition of C1-mediated immune hemolysis by monomeric and dimeric peptides from the second constant domain of human immunoglobulin G. J Immunol. 1981 Dec;127(6):2555–2560. [PubMed] [Google Scholar]
  32. Medof M. E., Kinoshita T., Nussenzweig V. Inhibition of complement activation on the surface of cells after incorporation of decay-accelerating factor (DAF) into their membranes. J Exp Med. 1984 Nov 1;160(5):1558–1578. doi: 10.1084/jem.160.5.1558. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Morrison S. L., Johnson M. J., Herzenberg L. A., Oi V. T. Chimeric human antibody molecules: mouse antigen-binding domains with human constant region domains. Proc Natl Acad Sci U S A. 1984 Nov;81(21):6851–6855. doi: 10.1073/pnas.81.21.6851. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Oi V. T., Morrison S. L., Herzenberg L. A., Berg P. Immunoglobulin gene expression in transformed lymphoid cells. Proc Natl Acad Sci U S A. 1983 Feb;80(3):825–829. doi: 10.1073/pnas.80.3.825. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Oi V. T., Vuong T. M., Hardy R., Reidler J., Dangle J., Herzenberg L. A., Stryer L. Correlation between segmental flexibility and effector function of antibodies. Nature. 1984 Jan 12;307(5947):136–140. doi: 10.1038/307136a0. [DOI] [PubMed] [Google Scholar]
  36. Riechmann L., Clark M., Waldmann H., Winter G. Reshaping human antibodies for therapy. Nature. 1988 Mar 24;332(6162):323–327. doi: 10.1038/332323a0. [DOI] [PubMed] [Google Scholar]
  37. Schumaker V. N., Calcott M. A., Spiegelberg H. L., Müller-Eberhard H. J. Ultracentifuge studies of the binding of IgG of different subclasses to the Clq subunit of the first component of complement. Biochemistry. 1976 Nov 16;15(23):5175–5181. doi: 10.1021/bi00668a035. [DOI] [PubMed] [Google Scholar]
  38. Schönermark S., Rauterberg E. W., Shin M. L., Löke S., Roelcke D., Hänsch G. M. Homologous species restriction in lysis of human erythrocytes: a membrane-derived protein with C8-binding capacity functions as an inhibitor. J Immunol. 1986 Mar 1;136(5):1772–1776. [PubMed] [Google Scholar]
  39. Shin M. L., Hänsch G., Hu V. W., Nicholson-Weller A. Membrane factors responsible for homologous species restriction of complement-mediated lysis: evidence for a factor other than DAF operating at the stage of C8 and C9. J Immunol. 1986 Mar 1;136(5):1777–1782. [PubMed] [Google Scholar]
  40. Sim R. B., Twose T. M., Paterson D. S., Sim E. The covalent-binding reaction of complement component C3. Biochem J. 1981 Jan 1;193(1):115–127. doi: 10.1042/bj1930115. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Spiegelberg H. L. Biological activities of immunoglobulins of different classes and subclasses. Adv Immunol. 1974;19(0):259–294. doi: 10.1016/s0065-2776(08)60254-0. [DOI] [PubMed] [Google Scholar]
  42. Tack B. F. The beta-Cys-gamma-Glu thiolester bond in human C3, C4, and alpha 2-macroglobulin. Springer Semin Immunopathol. 1983;6(4):259–282. doi: 10.1007/BF02116276. [DOI] [PubMed] [Google Scholar]
  43. Takata Y., Tamura N., Fujita T. Interaction of C3 with antigen-antibody complexes in the process of solubilization of immune precipitates. J Immunol. 1984 May;132(5):2531–2537. [PubMed] [Google Scholar]
  44. Tenner A. J., Lesavre P. H., Cooper N. R. Purification and radiolabeling of human C1q. J Immunol. 1981 Aug;127(2):648–653. [PubMed] [Google Scholar]
  45. Winkelhake J. L. Immunoglobulin structure and effector functions. Immunochemistry. 1978 Sep;15(9):695–714. doi: 10.1016/0161-5890(78)90044-5. [DOI] [PubMed] [Google Scholar]
  46. Zalman L. S., Wood L. M., Müller-Eberhard H. J. Isolation of a human erythrocyte membrane protein capable of inhibiting expression of homologous complement transmembrane channels. Proc Natl Acad Sci U S A. 1986 Sep;83(18):6975–6979. doi: 10.1073/pnas.83.18.6975. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES