Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1988 Sep 1;168(3):891–904. doi: 10.1084/jem.168.3.891

Cellular induction of chronic allotype suppression of IgG2a in Ighb/b homozygous mice and its abrogation by in vivo treatment with anti-CD8 monoclonal antibody

PMCID: PMC2189018  PMID: 2902183

Abstract

We report here the successful induction of allotype suppression in homozygous Ighb/b mice (CB20 or C57BL/6) by neonatal injection of T splenocytes from Igha congenic sensitized mice (BALB/c or BC8, respectively). The sensitization of the T cell donors was achieved by two intravenous injections of B splenocytes from Ighb congenic mice. Treated homozygous Ighb/b mice developed, as of 16-24 wk of age, a chronic suppression of Igh-1b expression (IgG2a of Ighb haplotype). The other productions tested (IgM, IgD, and IgA) of Ighb haplotype were unaffected. In vivo treatment with cytotoxic anti-CD4 or anti-CD8 mAb of mice subjected to chronic Igh-1b suppression clearly showed that CD8+ lymphocytes (suppressor or cytotoxic cell) were essential for the maintenance of the suppression. The suppression was indeed abrogated after a 1-wk treatment with anti-CD8 mAb containing culture supernatant, whereas, the anti-CD4-treated mice continued to be subjected to suppression. This anti-CD8 in vivo treatment was shown to have no effect on thymus but to severely reduce the percentages of CD8+ cells in spleen and in peripheral blood without affecting the percentages of CD4+ cells, leading to a large and rapid Igh-1b expression (up to 0.5 mg per ml of serum, the day after the end of the treatment). This suppression abrogation, and thus the Igh-1b expression, was either transient or permanent. When it was transient, a second 1-wk treatment with anti-CD8 mAb containing culture supernatant induced once again a rapid and significant production of Igh-1b (up to 0.3 mg of Igh-1b per ml of serum).

Full Text

The Full Text of this article is available as a PDF (978.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Benaroch P., Bordenave G. Enhancement in Igha mouse strains of the "natural" suppressive activity of normal T splenocytes against the expression of Igh-1b allotype. I. Molecular aspects of the chronic suppression obtained. Eur J Immunol. 1988 Jan;18(1):51–58. doi: 10.1002/eji.1830180109. [DOI] [PubMed] [Google Scholar]
  2. Benaroch P., Bordenave G. Normal T splenocytes are able to induce immunoglobulin allotypic suppression in F1 hybrid mice. Eur J Immunol. 1987 Feb;17(2):167–171. doi: 10.1002/eji.1830170203. [DOI] [PubMed] [Google Scholar]
  3. Bosma M. J., Bosma G. C. Chronic suppression of immunoglobulin allotype production in adult congenic mice. Nature. 1976 Jan 29;259(5541):313–315. doi: 10.1038/259313a0. [DOI] [PubMed] [Google Scholar]
  4. Bosma M. J., Bosma G. C. Congenic mouse strains: the expression of a hidden immunoglobulin allotype in a congenic partner strain of BALB-c mice. J Exp Med. 1974 Mar 1;139(3):512–527. doi: 10.1084/jem.139.3.512. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cobbold S. P., Jayasuriya A., Nash A., Prospero T. D., Waldmann H. Therapy with monoclonal antibodies by elimination of T-cell subsets in vivo. Nature. 1984 Dec 6;312(5994):548–551. doi: 10.1038/312548a0. [DOI] [PubMed] [Google Scholar]
  6. DRAY S. Effect of maternal isoantibodies on the quantitative expression of two allelic genes controlling gamma-globulin allotypic specificities. Nature. 1962 Aug 18;195:677–680. doi: 10.1038/195677a0. [DOI] [PubMed] [Google Scholar]
  7. David G. S., Todd C. W. Suppression of heavy and light chain allotypic expression in homozygous rabbits through embryo transfer. Proc Natl Acad Sci U S A. 1969 Mar;62(3):860–866. doi: 10.1073/pnas.62.3.860. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Dialynas D. P., Quan Z. S., Wall K. A., Pierres A., Quintáns J., Loken M. R., Pierres M., Fitch F. W. Characterization of the murine T cell surface molecule, designated L3T4, identified by monoclonal antibody GK1.5: similarity of L3T4 to the human Leu-3/T4 molecule. J Immunol. 1983 Nov;131(5):2445–2451. [PubMed] [Google Scholar]
  9. Dubiski S. Suppression of synthesis of allotypically defined immunoglobulins and compensation by another sub-class of immunoglobulin. Nature. 1967 Jun 24;214(5095):1365–1366. doi: 10.1038/2141365a0. [DOI] [PubMed] [Google Scholar]
  10. Feinberg A. P., Vogelstein B. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem. 1983 Jul 1;132(1):6–13. doi: 10.1016/0003-2697(83)90418-9. [DOI] [PubMed] [Google Scholar]
  11. Girard R., Metezeau P., Chaby R. Repopulation of spleens of irradiated mice after injection of spleen cell subpopulations. Cell Tissue Kinet. 1987 Jan;20(1):77–87. doi: 10.1111/j.1365-2184.1987.tb01084.x. [DOI] [PubMed] [Google Scholar]
  12. Guesdon J. L., Ternynck T., Avrameas S. The use of avidin-biotin interaction in immunoenzymatic techniques. J Histochem Cytochem. 1979 Aug;27(8):1131–1139. doi: 10.1177/27.8.90074. [DOI] [PubMed] [Google Scholar]
  13. Herzenberg L. A., Herzenberg L. A. Short-term and chronic allotype suppression in mice. Contemp Top Immunobiol. 1974;3:41–75. doi: 10.1007/978-1-4684-3045-5_2. [DOI] [PubMed] [Google Scholar]
  14. Huang C. M., Parsons M., Oi V. T., Huang H. J., Herzenberg L. A. Genetic characterization of mouse immunoglobulin allotypic determinants (allotopes) defined by monoclonal antibodies. Immunogenetics. 1983;18(4):311–321. doi: 10.1007/BF00372464. [DOI] [PubMed] [Google Scholar]
  15. Jacobson E. B., Herzenberg L. A. Active suppression of immunoglobulin allotype synthesis. I. Chronic suppression after perinatal exposure to maternal antibody to paternal allotype in (SJL x BALB-c)F 1 mice. J Exp Med. 1972 May 1;135(5):1151–1162. doi: 10.1084/jem.135.5.1151. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Julius M. H., Simpson E., Herzenberg L. A. A rapid method for the isolation of functional thymus-derived murine lymphocytes. Eur J Immunol. 1973 Oct;3(10):645–649. doi: 10.1002/eji.1830031011. [DOI] [PubMed] [Google Scholar]
  17. Kolb C., DiPauli R., Weiler E. Unidirectional IgG allotype- and isotype-specific suppressor cells in congeneic mice. Cell Immunol. 1986 May;99(2):334–344. doi: 10.1016/0008-8749(86)90242-x. [DOI] [PubMed] [Google Scholar]
  18. LIEBERMAN R., DRAY S. MATERNAL-FETAL MORTALITY IN MICE WITH ISOANTIBODIES TO PATERNAL GAMMA-GLOBULIN ALLOTYPES. Proc Soc Exp Biol Med. 1964 Aug-Sep;116:1069–1074. doi: 10.3181/00379727-116-29454. [DOI] [PubMed] [Google Scholar]
  19. Ledbetter J. A., Herzenberg L. A. Xenogeneic monoclonal antibodies to mouse lymphoid differentiation antigens. Immunol Rev. 1979;47:63–90. doi: 10.1111/j.1600-065x.1979.tb00289.x. [DOI] [PubMed] [Google Scholar]
  20. OUDIN J. Allotypy of rabbit serum proteins. I. Immuno-chemical analysis leading to the individualization of seven main allotypes. J Exp Med. 1960 Jul 1;112:107–124. doi: 10.1084/jem.112.1.107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. OUDIN J. Allotypy of rabbit serum proteins. II. Relationships between various allotypes: their common antigenic specificity, their distribution in a sample population; genetic implications. J Exp Med. 1960 Jul 1;112:125–142. doi: 10.1084/jem.112.1.125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. OUDIN J. L'allotypie de certains antigènes protéidiques du sérum. C R Hebd Seances Acad Sci. 1956 May 23;242(21):2606–2608. [PubMed] [Google Scholar]
  23. OUDIN J. Réaction de précipitation spécifique entre des sérums d'animaux de même espèce. C R Hebd Seances Acad Sci. 1956 May 14;242(20):2489–2490. [PubMed] [Google Scholar]
  24. Ollo R., Auffray C., Morchamps C., Rougeon F. Comparison of mouse immunoglobulin gamma 2a and gamma 2b chain genes suggests that exons can be exchanged between genes in a multigenic family. Proc Natl Acad Sci U S A. 1981 Apr;78(4):2442–2446. doi: 10.1073/pnas.78.4.2442. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Pierres M., Goridis C., Golstein P. Inhibition of murine T cell-mediated cytolysis and T cell proliferation by a rat monoclonal antibody immunoprecipitating two lymphoid cell surface polypeptides of 94 000 and 180 000 molecular weight. Eur J Immunol. 1982 Jan;12(1):60–69. doi: 10.1002/eji.1830120112. [DOI] [PubMed] [Google Scholar]
  26. Reisner Y., Itzicovitch L., Meshorer A., Sharon N. Hemopoietic stem cell transplantation using mouse bone marrow and spleen cells fractionated by lectins. Proc Natl Acad Sci U S A. 1978 Jun;75(6):2933–2936. doi: 10.1073/pnas.75.6.2933. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Schüppel R., Wilke J., Weiler E. Monoclonal anti-allotype antibody towards BALB/c IgM. Analysis of specificity and site of a V-C crossover in recombinant strain BALB-Igh-Va/Igh-Cb. Eur J Immunol. 1987 May;17(5):739–741. doi: 10.1002/eji.1830170527. [DOI] [PubMed] [Google Scholar]
  28. Vice J. L., Hunt W. L., Dray S. Zygote transfer to facilitate altered expression of immunoglobulin light chain phenotypes in homozygous rabbits. Proc Soc Exp Biol Med. 1969 Mar;130(3):730–733. doi: 10.3181/00379727-130-33643. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES