Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1988 Sep 1;168(3):983–1002. doi: 10.1084/jem.168.3.983

Purification, characterization, and pathogenicity of Moraxella bovis pili

PMCID: PMC2189028  PMID: 2902184

Abstract

Pilins composed of the alpha or beta pilins of Moraxella bovis strain Epp63 were purified, subjected to chemical or enzymatic cleavage, and the resulting fragments sequenced by automated Edman degradation. alpha Pilin was found to be a 155-amino-acid polypeptide with a single intramolecular disulfide bridge. The beta pilin amino acid sequence substantiated the previously reported structure derived from the beta pilin gene DNA sequence, and indicated that the alpha and beta pilins of this strain are approximately 70% homologous. DNA hybridization studies of genomic DNA from the alpha- and beta-piliated variants of strain Epp63 indicated that the expression of the two pilin types was governed by an oscillating mechanism of chromosomal rearrangement. The alpha and beta pili were evaluated serologically and found to exhibit approximately 50% shared antigenicity, indicating that regions of conserved and heterologous sequence specify both type-specific and crossreacting epitopes. The pathogenicity of the alpha- and beta- piliated variants was studied by ocular inoculation of calves eyes; beta-piliated organisms were significantly more infectious than alpha- piliated organisms, indicating that beta pili confer, or are associated with, a relative advantage during the first stages of ocular infection. Preliminary analysis of other M. bovis strains suggests that each strain produces two types of pilin, and that this property may be characteristic of the species.

Full Text

The Full Text of this article is available as a PDF (1.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adelstein R. S., Kuehl W. M. Structural studies on rabbit skeletal actin. I. Isolation and characterization of the peptides produced by cyanogen bromide cleavage. Biochemistry. 1970 Mar 17;9(6):1355–1364. doi: 10.1021/bi00808a009. [DOI] [PubMed] [Google Scholar]
  2. Annuar B. O., Wilcox G. E. Adherence of Moraxella bovis to cell cultures of bovine origin. Res Vet Sci. 1985 Sep;39(2):241–246. [PubMed] [Google Scholar]
  3. Arends J. J., Barto P. B., Wright R. E. Transmission of Moraxella bovis in the laboratory by the face fly (Diptera: muscidae). J Econ Entomol. 1982 Oct;75(5):816–821. doi: 10.1093/jee/75.5.816. [DOI] [PubMed] [Google Scholar]
  4. Blattner F. R., Blechl A. E., Denniston-Thompson K., Faber H. E., Richards J. E., Slightom J. L., Tucker P. W., Smithies O. Cloning human fetal gamma globin and mouse alpha-type globin DNA: preparation and screening of shotgun collections. Science. 1978 Dec 22;202(4374):1279–1284. doi: 10.1126/science.725603. [DOI] [PubMed] [Google Scholar]
  5. Bovre K., Froholm L. O. Variation of colony morphology reflecting fimbriation in Moraxella bovis and two reference strains of M. nonliquefaciens. Acta Pathol Microbiol Scand B Microbiol Immunol. 1972;80(5):629–640. [PubMed] [Google Scholar]
  6. Burnette W. N. "Western blotting": electrophoretic transfer of proteins from sodium dodecyl sulfate--polyacrylamide gels to unmodified nitrocellulose and radiographic detection with antibody and radioiodinated protein A. Anal Biochem. 1981 Apr;112(2):195–203. doi: 10.1016/0003-2697(81)90281-5. [DOI] [PubMed] [Google Scholar]
  7. Chandler R. L., Turfrey B., Smith K., Gourlay R. N. Virulence of Moraxella bovis in gnotobiotic calves. Vet Rec. 1980 Apr 19;106(16):364–365. doi: 10.1136/vr.106.16.364. [DOI] [PubMed] [Google Scholar]
  8. Dilworth J. A., Hendley J. O., Mandell G. L. Attachment and ingestion of gonococci human neutrophils. Infect Immun. 1975 Mar;11(3):512–516. doi: 10.1128/iai.11.3.512-516.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. ELLMAN G. L. Tissue sulfhydryl groups. Arch Biochem Biophys. 1959 May;82(1):70–77. doi: 10.1016/0003-9861(59)90090-6. [DOI] [PubMed] [Google Scholar]
  10. Froholm L. O., Bovre K. Fimbriation associated with the spreading-corroding colony type in Moraxella kingii. Acta Pathol Microbiol Scand B Microbiol Immunol. 1972;80(5):641–648. [PubMed] [Google Scholar]
  11. GREAVES R. I. Preservation of living cells by freeze-drying. Ann N Y Acad Sci. 1960 Apr 13;85:723–728. doi: 10.1111/j.1749-6632.1960.tb49992.x. [DOI] [PubMed] [Google Scholar]
  12. GROSS E., WITKOP B. Nonenzymatic cleavage of peptide bonds: the methionine residues in bovine pancreatic ribonuclease. J Biol Chem. 1962 Jun;237:1856–1860. [PubMed] [Google Scholar]
  13. Gerhardt R. R., Allen J. W., Greene W. H., Smith P. C. The role of face flies in an episode of infectious bovine keratoconjunctivitis. J Am Vet Med Assoc. 1982 Jan 15;180(2):156–159. [PubMed] [Google Scholar]
  14. HENSON J. B., GRUMBLES L. C. Infectious bovine keratoconjunctivitis. I. Etiology. Am J Vet Res. 1960 Sep;21:761–766. [PubMed] [Google Scholar]
  15. Henrichsen J., Froholm L. O., Bovre K. Studies on bacterial surface translocation. 2. Correlation of twitching motility and fimbriation in colony variants of Moraxella nonliquefaciens, M. bovis, and M. kingii. Acta Pathol Microbiol Scand B Microbiol Immunol. 1972;80(3):445–452. [PubMed] [Google Scholar]
  16. Henrichsen J. Twitching motility. Annu Rev Microbiol. 1983;37:81–93. doi: 10.1146/annurev.mi.37.100183.000501. [DOI] [PubMed] [Google Scholar]
  17. Hermodson M. A., Chen K. C., Buchanan T. M. Neisseria pili proteins: amino-terminal amino acid sequences and identification of an unusual amino acid. Biochemistry. 1978 Feb 7;17(3):442–445. doi: 10.1021/bi00596a010. [DOI] [PubMed] [Google Scholar]
  18. Hughes D. E., Pugh G. W., Jr A five-year study of infectious bovine keratoconjunctivitis in a beef herd. J Am Vet Med Assoc. 1970 Aug 15;157(4):443–451. [PubMed] [Google Scholar]
  19. Hughes D. E., Pugh G. W., Jr, Booth G. D. Induced infectious bovine keratoconjunctivitis: vaccination with whole cell bacterins of Moraxella bovis mixed with Freund's incomplete adjuvant. Am J Vet Res. 1977 Nov;38(11):1905–1907. [PubMed] [Google Scholar]
  20. Hughes D. E., Pugh G. W., Jr Experimentally induced infectious bovine keratoconjunctivitis: vaccination with nonviable Moraxella bovis culture. Am J Vet Res. 1972 Dec;33(12):2475–2479. [PubMed] [Google Scholar]
  21. Jackman S. H., Rosenbusch R. F. In vitro adherence of Moraxella bovis to intact corneal epithelium. Curr Eye Res. 1984 Sep;3(9):1107–1112. doi: 10.3109/02713688409000809. [DOI] [PubMed] [Google Scholar]
  22. Jones R. B., Newland J. C., Olsen D. A., Buchanan T. M. Immune-enhanced phagocytosis of Neisseria gonorrhoeae by macrophages: characterization of the major antigens to which opsonins are directed. J Gen Microbiol. 1980 Dec;121(2):365–372. doi: 10.1099/00221287-121-2-365. [DOI] [PubMed] [Google Scholar]
  23. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  24. Lehr C., Jayappa H. G., Goodnow R. A. Serologic and protective characterization of Moraxella bovis pili. Cornell Vet. 1985 Oct;75(4):484–492. [PubMed] [Google Scholar]
  25. Marrs C. F., Schoolnik G., Koomey J. M., Hardy J., Rothbard J., Falkow S. Cloning and sequencing of a Moraxella bovis pilin gene. J Bacteriol. 1985 Jul;163(1):132–139. doi: 10.1128/jb.163.1.132-139.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. McKern N. M., O'Donnell I. J., Stewart D. J., Clark B. L. Primary structure of pilin protein from Bacteroides nodosus strain 216: comparison with the corresponding protein from strain 198. J Gen Microbiol. 1985 Jan;131(1):1–6. doi: 10.1099/00221287-131-1-1. [DOI] [PubMed] [Google Scholar]
  27. Oliveira E. B., Gotschlich C., Liu T. Y. Primary structure of human C-reactive protein. J Biol Chem. 1979 Jan 25;254(2):489–502. [PubMed] [Google Scholar]
  28. Pedersen K. B., Froholm L. O., Bovre K. Fimbriation and colony type of Moraxella bovis in relation to conjunctival colonization and development of keratoconjunctivitis in cattle. Acta Pathol Microbiol Scand B Microbiol Immunol. 1972;80(6):911–918. doi: 10.1111/j.0365-5563.1973.tb00019.x. [DOI] [PubMed] [Google Scholar]
  29. Pedersen K. B. Moraxella bovis isolated from cattle with infectious keratoconjunctivitis. Acta Pathol Microbiol Scand B Microbiol Immunol. 1970;78(4):429–434. doi: 10.1111/j.1699-0463.1970.tb04324.x. [DOI] [PubMed] [Google Scholar]
  30. Pugh G. W., Jr, Hughes D. E., Booth G. D. Experimentally induced infections bovine keratoconjunctivitis: effectiveness of a pilus vaccine against exposure to homologous strains of Moraxella bovis. Am J Vet Res. 1977 Oct;38(10):1519–1522. [PubMed] [Google Scholar]
  31. Pugh G. W., Jr, Hughes D. E. Bovine infectious keratoconjunctivitis: Moraxella bovis as the sole etiologic agent in a winter epizootic. J Am Vet Med Assoc. 1972 Sep 1;161(5):481–486. [PubMed] [Google Scholar]
  32. Pugh G. W., Jr, Hughes D. E. Experimental bovine infectious keratoconjunctivitis caused by sunlamp irradiation and Moraxella bovis infection: correlation of hamolytic ability and pathogenicity. Am J Vet Res. 1968 Apr;29(4):835–839. [PubMed] [Google Scholar]
  33. Pugh G. W., Jr, Hughes D. E., McDonald T. J. The isolation and characterization of Moraxella bovis. Am J Vet Res. 1966 Jul;27(119):957–962. [PubMed] [Google Scholar]
  34. Sastry P. A., Pearlstone J. R., Smillie L. B., Paranchych W. Amino acid sequence of pilin isolated from pseudomonas aeruginosa PAK. FEBS Lett. 1983 Jan 24;151(2):253–256. doi: 10.1016/0014-5793(83)80080-5. [DOI] [PubMed] [Google Scholar]
  35. Sastry P. A., Pearlstone J. R., Smillie L. B., Paranchych W. Studies on the primary structure and antigenic determinants of pilin isolated from Pseudomonas aeruginosa K. Can J Biochem Cell Biol. 1985 Apr;63(4):284–291. doi: 10.1139/o85-042. [DOI] [PubMed] [Google Scholar]
  36. Schoolnik G. K., Fernandez R., Tai J. Y., Rothbard J., Gotschlich E. C. Gonococcal pili. Primary structure and receptor binding domain. J Exp Med. 1984 May 1;159(5):1351–1370. doi: 10.1084/jem.159.5.1351. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Simpson R. J., Neuberger M. R., Liu T. Y. Complete amino acid analysis of proteins from a single hydrolysate. J Biol Chem. 1976 Apr 10;251(7):1936–1940. [PubMed] [Google Scholar]
  38. Southern E. M. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol. 1975 Nov 5;98(3):503–517. doi: 10.1016/s0022-2836(75)80083-0. [DOI] [PubMed] [Google Scholar]
  39. Swanson J., Barrera O. Gonococcal pilus subunit size heterogeneity correlates with transitions in colony piliation phenotype, not with changes in colony opacity. J Exp Med. 1983 Nov 1;158(5):1459–1472. doi: 10.1084/jem.158.5.1459. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Swanson J., Robbins K., Barrera O., Corwin D., Boslego J., Ciak J., Blake M., Koomey J. M. Gonococcal pilin variants in experimental gonorrhea. J Exp Med. 1987 May 1;165(5):1344–1357. doi: 10.1084/jem.165.5.1344. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Taylor R. K., Miller V. L., Furlong D. B., Mekalanos J. J. Use of phoA gene fusions to identify a pilus colonization factor coordinately regulated with cholera toxin. Proc Natl Acad Sci U S A. 1987 May;84(9):2833–2837. doi: 10.1073/pnas.84.9.2833. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Ward M. E., Watt P. J., Robertson J. N. The human fallopian tube: a laboratory model for gonococcal infection. J Infect Dis. 1974 Jun;129(6):650–659. doi: 10.1093/infdis/129.6.650. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES