Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1988 Oct 1;168(4):1493–1498. doi: 10.1084/jem.168.4.1493

Acidic precursor revealed in human eosinophil granule major basic protein cDNA [published erratum appears in J Exp Med 1989 Sep 1;170(3):1057]

PMCID: PMC2189086  PMID: 3171483

Abstract

Eosinophil granule major basic protein (MBP), a potent toxin for helminths and various cell types, is a 13.8-kD single polypeptide rich in arginine with a calculated isoelectric point (pI) of 10.9. A cDNA for human MBP was isolated from a gamma GT10 HL-60 cDNA library. The nucleotide sequence of the MBP cDNA indicates that MBP is translated as a 25.2-kD preproprotein. The 9.9-kD pro-portion of proMBP is rich in glutamic and aspartic acids and has a calculated pI of 3.9, while proMBP itself has a calculated pI of 6.2. We suggest that MBP is translated as a nontoxic precursor that protects the eosinophil from damage while the protein is processed through the endoplasmic reticulum to its sequestered site in the granule core toxic MBP, and we present results from the literature suggesting that other cationic toxins, which damage cell membranes, may also be processed from nontoxic precursors containing distinct anionic and cationic regions.

Full Text

The Full Text of this article is available as a PDF (379.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ACKERMAN G. A. EOSINOPHILIC LEUKEMIA: A MORPHOLOGIC AND HISTOCHEMICAL STUDY. Blood. 1964 Oct;24:372–388. [PubMed] [Google Scholar]
  2. Biggin M. D., Gibson T. J., Hong G. F. Buffer gradient gels and 35S label as an aid to rapid DNA sequence determination. Proc Natl Acad Sci U S A. 1983 Jul;80(13):3963–3965. doi: 10.1073/pnas.80.13.3963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bilofsky H. S., Burks C., Fickett J. W., Goad W. B., Lewitter F. I., Rindone W. P., Swindell C. D., Tung C. S. The GenBank genetic sequence databank. Nucleic Acids Res. 1986 Jan 10;14(1):1–4. doi: 10.1093/nar/14.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Butterworth A. E., Wassom D. L., Gleich G. J., Loegering D. A., David J. R. Damage to schistosomula of Schistosoma mansoni induced directly by eosinophil major basic protein. J Immunol. 1979 Jan;122(1):221–229. [PubMed] [Google Scholar]
  5. Carrasco L., Vázquez D., Hernández-Lucas C., Carbonero P., García-Olmedo F. Thionins: plant peptides that modify membrane permeability in cultured mammalian cells. Eur J Biochem. 1981 May;116(1):185–189. doi: 10.1111/j.1432-1033.1981.tb05317.x. [DOI] [PubMed] [Google Scholar]
  6. Fischkoff S. A., Pollak A., Gleich G. J., Testa J. R., Misawa S., Reber T. J. Eosinophilic differentiation of the human promyelocytic leukemia cell line, HL-60. J Exp Med. 1984 Jul 1;160(1):179–196. doi: 10.1084/jem.160.1.179. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Geliebter J., Zeff R. A., Melvold R. W., Nathenson S. G. Mitotic recombination in germ cells generated two major histocompatibility complex mutant genes shown to be identical by RNA sequence analysis: Kbm9 and Kbm6. Proc Natl Acad Sci U S A. 1986 May;83(10):3371–3375. doi: 10.1073/pnas.83.10.3371. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. George D. G., Barker W. C., Hunt L. T. The protein identification resource (PIR). Nucleic Acids Res. 1986 Jan 10;14(1):11–15. doi: 10.1093/nar/14.1.11. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Gleich G. J., Adolphson C. R. The eosinophilic leukocyte: structure and function. Adv Immunol. 1986;39:177–253. doi: 10.1016/s0065-2776(08)60351-x. [DOI] [PubMed] [Google Scholar]
  10. Gleich G. J., Loegering D. A., Kueppers F., Bajaj S. P., Mann K. G. Physiochemical and biological properties of the major basic protein from guinea pig eosinophil granules. J Exp Med. 1974 Aug 1;140(2):313–332. doi: 10.1084/jem.140.2.313. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gleich G. J., Loegering D. A., Maldonado J. E. Identification of a major basic protein in guinea pig eosinophil granules. J Exp Med. 1973 Jun 1;137(6):1459–1471. doi: 10.1084/jem.137.6.1459. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kozak M. Compilation and analysis of sequences upstream from the translational start site in eukaryotic mRNAs. Nucleic Acids Res. 1984 Jan 25;12(2):857–872. doi: 10.1093/nar/12.2.857. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Lewis D. M., Lewis J. C., Loegering D. A., Gleich G. J. Localization of the guinea pig eosinophil major basic protein to the core of the granule. J Cell Biol. 1978 Jun;77(3):702–713. doi: 10.1083/jcb.77.3.702. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Maddox D. E., Kephart G. M., Coulam C. B., Butterfield J. H., Benirschke K., Gleich G. J. Localization of a molecule immunochemically similar to eosinophil major basic protein in human placenta. J Exp Med. 1984 Jul 1;160(1):29–41. doi: 10.1084/jem.160.1.29. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Maniatis T., Hardison R. C., Lacy E., Lauer J., O'Connell C., Quon D., Sim G. K., Efstratiadis A. The isolation of structural genes from libraries of eucaryotic DNA. Cell. 1978 Oct;15(2):687–701. doi: 10.1016/0092-8674(78)90036-3. [DOI] [PubMed] [Google Scholar]
  16. Ponz F., Paz-Ares J., Hernández-Lucas C., Carbonero P., García-Olmedo F. Synthesis and processing of thionin precursors in developing endosperm from barley (Hordeum vulgare L.). EMBO J. 1983;2(7):1035–1040. doi: 10.1002/j.1460-2075.1983.tb01542.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Ponz F., Paz-Ares J., Hernández-Lucas C., García-Olmedo F., Carbonero P. Cloning and nucleotide sequence of a cDNA encoding the precursor of the barley toxin alpha-hordothionin. Eur J Biochem. 1986 Apr 1;156(1):131–135. doi: 10.1111/j.1432-1033.1986.tb09557.x. [DOI] [PubMed] [Google Scholar]
  18. Proudfoot N. J., Brownlee G. G. 3' non-coding region sequences in eukaryotic messenger RNA. Nature. 1976 Sep 16;263(5574):211–214. doi: 10.1038/263211a0. [DOI] [PubMed] [Google Scholar]
  19. Shaw G., Kamen R. A conserved AU sequence from the 3' untranslated region of GM-CSF mRNA mediates selective mRNA degradation. Cell. 1986 Aug 29;46(5):659–667. doi: 10.1016/0092-8674(86)90341-7. [DOI] [PubMed] [Google Scholar]
  20. Wallace R. B., Shaffer J., Murphy R. F., Bonner J., Hirose T., Itakura K. Hybridization of synthetic oligodeoxyribonucleotides to phi chi 174 DNA: the effect of single base pair mismatch. Nucleic Acids Res. 1979 Aug 10;6(11):3543–3557. doi: 10.1093/nar/6.11.3543. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Wasmoen T. L., Bell M. P., Loegering D. A., Gleich G. J., Prendergast F. G., McKean D. J. Biochemical and amino acid sequence analysis of human eosinophil granule major basic protein. J Biol Chem. 1988 Sep 5;263(25):12559–12563. [PubMed] [Google Scholar]
  22. Wasmoen T. L., Coulam C. B., Leiferman K. M., Gleich G. J. Increases of plasma eosinophil major basic protein levels late in pregnancy predict onset of labor. Proc Natl Acad Sci U S A. 1987 May;84(9):3029–3032. doi: 10.1073/pnas.84.9.3029. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Yamamoto K. R., Alberts B. M., Benzinger R., Lawhorne L., Treiber G. Rapid bacteriophage sedimentation in the presence of polyethylene glycol and its application to large-scale virus purification. Virology. 1970 Mar;40(3):734–744. doi: 10.1016/0042-6822(70)90218-7. [DOI] [PubMed] [Google Scholar]
  24. von Heijne G. Patterns of amino acids near signal-sequence cleavage sites. Eur J Biochem. 1983 Jun 1;133(1):17–21. doi: 10.1111/j.1432-1033.1983.tb07424.x. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES