Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1988 Dec 1;168(6):2207–2219. doi: 10.1084/jem.168.6.2207

Resistance of cytolytic lymphocytes to perforin-mediated killing. Lack of correlation with complement-associated homologous species restriction

PMCID: PMC2189133  PMID: 3199067

Abstract

CTL and NK cells resist self-mediated killing and lysis by their own pore-forming protein (PFP; perforin). Perforin, like C, lyses RBC. Efficient C-mediated lysis of RBC occurs when both C and RBC are from different species (homologous species restriction). A protective surface protein (C8-binding protein, homologous restriction factor) has been reported to mediate both homologous species restriction in C- dependent cytolysis and protection of some target cells against perforin-induced lysis. We show here that perforin, unlike C, lyses target cells across a variety of species, including the homologous one, while the same target cell populations resist the attack by homologous C. Perforin-containing extracts of CTL and LAK/NK cells from three species (rat, mouse, and human) and purified mouse perforin were tested against RBC from 10 different species, several nucleated target cell lines, and one primary cell population (thymocytes). While resisting lysis by homologous C, most of these cell types were lysed effectively by perforin without any homologous restriction pattern. CTL and NK cells, like other nucleated targets, are resistant to lysis by homologous but not heterologous C; however, these cell types are resistant to both homologous and heterologous perforin. Together, our results suggest that the protective mechanisms associated with C- and perforin-mediated lysis are distinct.

Full Text

The Full Text of this article is available as a PDF (1.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anegón I., Cuturi M. C., Trinchieri G., Perussia B. Interaction of Fc receptor (CD16) ligands induces transcription of interleukin 2 receptor (CD25) and lymphokine genes and expression of their products in human natural killer cells. J Exp Med. 1988 Feb 1;167(2):452–472. doi: 10.1084/jem.167.2.452. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Berke G. Cytotoxic T-lymphocytes. How do they function? Immunol Rev. 1983;72:5–42. doi: 10.1111/j.1600-065x.1983.tb01071.x. [DOI] [PubMed] [Google Scholar]
  3. Blakely A., Gorman K., Ostergaard H., Svoboda K., Liu C. C., Young J. D., Clark W. R. Resistance of cloned cytotoxic T lymphocytes to cell-mediated cytotoxicity. J Exp Med. 1987 Oct 1;166(4):1070–1083. doi: 10.1084/jem.166.4.1070. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Dennert G., Anderson C. G., Prochazka G. High activity of N-alpha-benzyloxycarbonyl-L-lysine thiobenzyl ester serine esterase and cytolytic perforin in cloned cell lines is not demonstrable in in-vivo-induced cytotoxic effector cells. Proc Natl Acad Sci U S A. 1987 Jul;84(14):5004–5008. doi: 10.1073/pnas.84.14.5004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Ferrini S., Miescher S., Zocchi M. R., von Fliedner V., Moretta A. Phenotypic and functional characterization of recombinant interleukin 2 (rIL 2)-induced activated killer cells: analysis at the population and clonal levels. J Immunol. 1987 Feb 15;138(4):1297–1302. [PubMed] [Google Scholar]
  6. Goldfarb R. H. Cell-mediated cytotoxic reactions. Hum Pathol. 1986 Feb;17(2):138–145. doi: 10.1016/s0046-8177(86)80286-6. [DOI] [PubMed] [Google Scholar]
  7. Henkart P. A. Mechanism of lymphocyte-mediated cytotoxicity. Annu Rev Immunol. 1985;3:31–58. doi: 10.1146/annurev.iy.03.040185.000335. [DOI] [PubMed] [Google Scholar]
  8. Houle J. J., Hoffmann E. M. Evidence for restriction of the ability of complement to lyse homologous erythrocytes. J Immunol. 1984 Sep;133(3):1444–1452. [PubMed] [Google Scholar]
  9. Hu V. W., Shin M. L. Species-restricted target cell lysis by human complement: complement-lysed erythrocytes from heterologous and homologous species differ in their ratio of bound to inserted C9. J Immunol. 1984 Oct;133(4):2133–2137. [PubMed] [Google Scholar]
  10. Hänsch G. M., Hammer C. H., Vanguri P., Shin M. L. Homologous species restriction in lysis of erythrocytes by terminal complement proteins. Proc Natl Acad Sci U S A. 1981 Aug;78(8):5118–5121. doi: 10.1073/pnas.78.8.5118. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Julius M. H., Simpson E., Herzenberg L. A. A rapid method for the isolation of functional thymus-derived murine lymphocytes. Eur J Immunol. 1973 Oct;3(10):645–649. doi: 10.1002/eji.1830031011. [DOI] [PubMed] [Google Scholar]
  12. Liu C. C., Perussia B., Cohn Z. A., Young J. D. Identification and characterization of a pore-forming protein of human peripheral blood natural killer cells. J Exp Med. 1986 Dec 1;164(6):2061–2076. doi: 10.1084/jem.164.6.2061. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Martin D. E., Zalman L. S., Müller-Eberhard H. J. Induction of expression of cell-surface homologous restriction factor upon anti-CD3 stimulation of human peripheral lymphocytes. Proc Natl Acad Sci U S A. 1988 Jan;85(1):213–217. doi: 10.1073/pnas.85.1.213. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Müller-Eberhard H. J. The molecular basis of target cell killing by human lymphocytes and of killer cell self-protection. Immunol Rev. 1988 Mar;103:87–98. doi: 10.1111/j.1600-065x.1988.tb00751.x. [DOI] [PubMed] [Google Scholar]
  15. Ortaldo J. R., Herberman R. B. Heterogeneity of natural killer cells. Annu Rev Immunol. 1984;2:359–394. doi: 10.1146/annurev.iy.02.040184.002043. [DOI] [PubMed] [Google Scholar]
  16. Perussia B., Ramoni C., Anegon I., Cuturi M. C., Faust J., Trinchieri G. Preferential proliferation of natural killer cells among peripheral blood mononuclear cells cocultured with B lymphoblastoid cell lines. Nat Immun Cell Growth Regul. 1987;6(4):171–188. [PubMed] [Google Scholar]
  17. Perussia B., Starr S., Abraham S., Fanning V., Trinchieri G. Human natural killer cells analyzed by B73.1, a monoclonal antibody blocking Fc receptor functions. I. Characterization of the lymphocyte subset reactive with B73.1. J Immunol. 1983 May;130(5):2133–2141. [PubMed] [Google Scholar]
  18. Podack E. R., Lowrey D. M., Lichtenheld M., Olsen K. J., Aebischer T., Binder D., Rupp F., Hengartner H. Structure, function and expression of murine and human perforin 1 (P1). Immunol Rev. 1988 Mar;103:203–211. doi: 10.1111/j.1600-065x.1988.tb00756.x. [DOI] [PubMed] [Google Scholar]
  19. Podack E. R., Young J. D., Cohn Z. A. Isolation and biochemical and functional characterization of perforin 1 from cytolytic T-cell granules. Proc Natl Acad Sci U S A. 1985 Dec;82(24):8629–8633. doi: 10.1073/pnas.82.24.8629. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Ramsdell F. J., Golub S. H. Generation of lymphokine-activated killer cell activity from human thymocytes. J Immunol. 1987 Sep 1;139(5):1446–1453. [PubMed] [Google Scholar]
  21. Roberts K., Lotze M. T., Rosenberg S. A. Separation and functional studies of the human lymphokine-activated killer cell. Cancer Res. 1987 Aug 15;47(16):4366–4371. [PubMed] [Google Scholar]
  22. Schönermark S., Filsinger S., Berger B., Hänsch G. M. The C8-binding protein of human erythrocytes: interaction with the components of the complement-attack phase. Immunology. 1988 Apr;63(4):585–590. [PMC free article] [PubMed] [Google Scholar]
  23. Schönermark S., Rauterberg E. W., Shin M. L., Löke S., Roelcke D., Hänsch G. M. Homologous species restriction in lysis of human erythrocytes: a membrane-derived protein with C8-binding capacity functions as an inhibitor. J Immunol. 1986 Mar 1;136(5):1772–1776. [PubMed] [Google Scholar]
  24. Shevach E. M., Stobo J. D., Green I. Immunoglobulin and theta-bearing murine leukemias and lymphomas. J Immunol. 1972 May;108(5):1146–1151. [PubMed] [Google Scholar]
  25. Shin M. L., Hänsch G., Hu V. W., Nicholson-Weller A. Membrane factors responsible for homologous species restriction of complement-mediated lysis: evidence for a factor other than DAF operating at the stage of C8 and C9. J Immunol. 1986 Mar 1;136(5):1777–1782. [PubMed] [Google Scholar]
  26. Shinkai Y., Ishikawa H., Hattori M., Okumura K. Resistance of mouse cytolytic cells to pore-forming protein-mediated cytolysis. Eur J Immunol. 1988 Jan;18(1):29–33. doi: 10.1002/eji.1830180106. [DOI] [PubMed] [Google Scholar]
  27. Skinner M., Marbrook J. The most efficient cytotoxic T lymphocytes are the least susceptible to lysis. J Immunol. 1987 Aug 15;139(4):985–987. [PubMed] [Google Scholar]
  28. Trinchieri G., Perussia B. Human natural killer cells: biologic and pathologic aspects. Lab Invest. 1984 May;50(5):489–513. [PubMed] [Google Scholar]
  29. Tschopp J., Masson D., Stanley K. K. Structural/functional similarity between proteins involved in complement- and cytotoxic T-lymphocyte-mediated cytolysis. 1986 Aug 28-Sep 3Nature. 322(6082):831–834. doi: 10.1038/322831a0. [DOI] [PubMed] [Google Scholar]
  30. Tschopp J., Nabholz M. The role of cytoplasmic granule components in cytolytic lymphocyte-mediated cytolysis. Ann Inst Pasteur Immunol. 1987 Mar-Apr;138(2):290–295. doi: 10.1016/s0769-2625(87)80081-8. [DOI] [PubMed] [Google Scholar]
  31. Verret C. R., Firmenich A. A., Kranz D. M., Eisen H. N. Resistance of cytotoxic T lymphocytes to the lytic effects of their toxic granules. J Exp Med. 1987 Nov 1;166(5):1536–1547. doi: 10.1084/jem.166.5.1536. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Vujanovic N. L., Herberman R. B., Maghazachi A. A., Hiserodt J. C. Lymphokine-activated killer cells in rats. III. A simple method for the purification of large granular lymphocytes and their rapid expansion and conversion into lymphokine-activated killer cells. J Exp Med. 1988 Jan 1;167(1):15–29. doi: 10.1084/jem.167.1.15. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Yamamoto K. I. Lytic activity of C5-9 complexes for erythrocytes from the species other than sheep: C9 rather than C8-dependent variation in lytic activity. J Immunol. 1977 Oct;119(4):1482–1485. [PubMed] [Google Scholar]
  34. Young J. D., Cohn Z. A. Cellular and humoral mechanisms of cytotoxicity: structural and functional analogies. Adv Immunol. 1987;41:269–332. doi: 10.1016/s0065-2776(08)60033-4. [DOI] [PubMed] [Google Scholar]
  35. Young J. D., Cohn Z. A., Podack E. R. The ninth component of complement and the pore-forming protein (perforin 1) from cytotoxic T cells: structural, immunological, and functional similarities. Science. 1986 Jul 11;233(4760):184–190. doi: 10.1126/science.2425429. [DOI] [PubMed] [Google Scholar]
  36. Young J. D., Hengartner H., Podack E. R., Cohn Z. A. Purification and characterization of a cytolytic pore-forming protein from granules of cloned lymphocytes with natural killer activity. Cell. 1986 Mar 28;44(6):849–859. doi: 10.1016/0092-8674(86)90007-3. [DOI] [PubMed] [Google Scholar]
  37. Young J. D., Liu C. C., Leong L. G., Cohn Z. A. The pore-forming protein (perforin) of cytolytic T lymphocytes is immunologically related to the components of membrane attack complex of complement through cysteine-rich domains. J Exp Med. 1986 Dec 1;164(6):2077–2082. doi: 10.1084/jem.164.6.2077. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Zalman L. S., Wood L. M., Müller-Eberhard H. J. Inhibition of antibody-dependent lymphocyte cytotoxicity by homologous restriction factor incorporated into target cell membranes. J Exp Med. 1987 Oct 1;166(4):947–955. doi: 10.1084/jem.166.4.947. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Zalman L. S., Wood L. M., Müller-Eberhard H. J. Isolation of a human erythrocyte membrane protein capable of inhibiting expression of homologous complement transmembrane channels. Proc Natl Acad Sci U S A. 1986 Sep;83(18):6975–6979. doi: 10.1073/pnas.83.18.6975. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES