Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1989 Jan 1;169(1):213–238. doi: 10.1084/jem.169.1.213

Long-lasting skin allograft tolerance in adult mice induced across fully allogeneic (multimajor H-2 plus multiminor histocompatibility) antigen barriers by a tolerance-inducing method using cyclophosphamide

PMCID: PMC2189174  PMID: 2642528

Abstract

A new method of cyclophosphamide (CP)-induced skin allograft tolerance in mice that can regularly overcome fully allogeneic (major H-2 plus non-H-2) antigen barriers in mice has been established. The components of the method are intravenous or intraperitoneal administration of 50- 100 micrograms of anti-Thy-1.2 mAb on day -1, intravenous injection of 90 x 10(6) allogeneic spleen cells mixed with 30 x 10(6) allogeneic bone marrow cells from the same donor on day 0, and intraperitoneal injection of 200 mg/kg CP on day 2. In each of four fully allogeneic donor----recipient combinations, including C3H/HeJ (C3H; H-2k)---- C57BL/6J(B6; H-2b), B6----C3H, BALB/cByJ (BALB; H-2d)----B6, and BALB--- -C3H, long-lasting survival of skin allografts was induced in most of the recipient mice. The specific tolerant state induced was dependent on the doses of the antibody and bone marrow cells used. The optimal timing of CP treatment to induce tolerance was found to be 1-3 d after the stimulating cell injection. Treatment with the anti-Thy-1.2 antibody together with CP on day 2 after the cell injection on day 0 also induced profound tolerance. In the B6 mice made tolerant of C3H with antibody, C3H spleen cells plus C3H bone marrow cells, and then CP, a minimal degree of stable mixed chimerism was established and the antitolerogen (C3H) immune responses examined here, including delayed footpad reaction (DFR), CTL activity, and capacity for antibody production against donor-strain antigens were abrogated in a tolerogen- specific manner. From cell transfer experiments, the mechanism of tolerance could be largely attributed to reduction of effector T cells reactive against the tolerogen, and strong suppressive influences that might prolong skin allograft survival directly were not detected in the tolerant mice. Moreover, pretreatment with anti-Thy-1.2 antibody or anti-L3T4 (CD4) antibody was more effective than pretreatment with anti- Lyt-1 (CD5) antibody or anti-Lyt-2 (CD8) antibody as an initial step in tolerance induction. These results suggest that permanent tolerance to fully allogeneic skin grafts may be induced because antibody given before the stimulating cell injection reduces the number of reactive T cells in the recipient mice. This antibody treatment may facilitate an antigen-stimulated destruction of responding and thus proliferating cells with CP by preventing a possibly less proliferative, more rapid maturation of reactive T cells or by destroying residual effector T cells.(ABSTRACT TRUNCATED AT 400 WORDS)

Full Text

The Full Text of this article is available as a PDF (1.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BERENBAUM M. C., BROWN I. N. PROLONGATION OF HOMOGRAFT SURVIVAL IN MICE WITH SINGLE DOSES OF CYCLOPHOSPHAMIDE. Nature. 1963 Oct 5;200:84–84. doi: 10.1038/200084a0. [DOI] [PubMed] [Google Scholar]
  2. Benjamin R. J., Waldmann H. Induction of tolerance by monoclonal antibody therapy. Nature. 1986 Apr 3;320(6061):449–451. doi: 10.1038/320449a0. [DOI] [PubMed] [Google Scholar]
  3. Boyse E. A., Lance E. M., Carswell E. A., Cooper S., Old L. J. Rejection of skin allografts by radiation chimaeras: selective gene action in the specification of cell surface structure. Nature. 1970 Aug 29;227(5261):901–903. doi: 10.1038/227901a0. [DOI] [PubMed] [Google Scholar]
  4. Brent L. Immunology. Approaches to tolerance in man. Nature. 1986 Jun 12;321(6071):650–651. doi: 10.1038/321650a0. [DOI] [PubMed] [Google Scholar]
  5. Cobbold S. P., Martin G., Qin S., Waldmann H. Monoclonal antibodies to promote marrow engraftment and tissue graft tolerance. Nature. 1986 Sep 11;323(6084):164–166. doi: 10.1038/323164a0. [DOI] [PubMed] [Google Scholar]
  6. FRISCH A. W., DAVIES G. H. INHIBITION OF HEMAGGLUTININ SYNTHESIS BY CYTOXAN. Cancer Res. 1965 Jun;25:745–751. [PubMed] [Google Scholar]
  7. Fan J. L., Mayumi H., Tokuda N., Himeno K., Nomoto K. Drug-induced tolerance to allografts in mice. XI. Tolerance induction using F1 (donor x recipient) spleen cells as a tolerogen. Transplant Proc. 1987 Aug;19(4):3513–3519. [PubMed] [Google Scholar]
  8. Hall B. M. Mechanisms of specific unresponsiveness to allografts. Transplant Proc. 1984 Aug;16(4):938–943. [PubMed] [Google Scholar]
  9. Hamilton B. L. L3T4-positive T cells participate in the induction of graft-vs-host disease in response to minor histocompatibility antigens. J Immunol. 1987 Oct 15;139(8):2511–2515. [PubMed] [Google Scholar]
  10. Ichikawa T., Nakayama E., Uenaka A., Monden M., Mori T. Effector cells in allelic H-2 class I-incompatible skin graft rejection. J Exp Med. 1987 Oct 1;166(4):982–990. doi: 10.1084/jem.166.4.982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Ildstad S. T., Bluestone J. A., Sachs D. H. Alloresistance to engraftment of allogeneic donor bone marrow is mediated by an Lyt-2+ T cell in mixed allogeneic reconstitution (C57BL/10Sn + B10.D2/nSn----C57BL/10Sn). J Exp Med. 1986 May 1;163(5):1343–1348. doi: 10.1084/jem.163.5.1343. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Ildstad S. T., Sachs D. H. Reconstitution with syngeneic plus allogeneic or xenogeneic bone marrow leads to specific acceptance of allografts or xenografts. Nature. 1984 Jan 12;307(5947):168–170. doi: 10.1038/307168a0. [DOI] [PubMed] [Google Scholar]
  13. Ildstad S. T., Wren S. M., Bluestone J. A., Barbieri S. A., Sachs D. H. Characterization of mixed allogeneic chimeras. Immunocompetence, in vitro reactivity, and genetic specificity of tolerance. J Exp Med. 1985 Jul 1;162(1):231–244. doi: 10.1084/jem.162.1.231. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Ildstad S. T., Wren S. M., Bluestone J. A., Barbieri S. A., Stephany D., Sachs D. H. Effect of selective T cell depletion of host and/or donor bone marrow on lymphopoietic repopulation, tolerance, and graft-vs-host disease in mixed allogeneic chimeras (B10 + B10.D2----B10). J Immunol. 1986 Jan;136(1):28–33. [PubMed] [Google Scholar]
  15. Korngold R., Sprent J. T cell subsets and graft-versus-host disease. Transplantation. 1987 Sep;44(3):335–339. doi: 10.1097/00007890-198709000-00002. [DOI] [PubMed] [Google Scholar]
  16. Korngold R., Sprent J. Variable capacity of L3T4+ T cells to cause lethal graft-versus-host disease across minor histocompatibility barriers in mice. J Exp Med. 1987 Jun 1;165(6):1552–1564. doi: 10.1084/jem.165.6.1552. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Krown S. E., Coico R., Scheid M. P., Fernandes G., Good R. A. Immune function in fully allogeneic mouse bone marrow chimeras. Clin Immunol Immunopathol. 1981 May;19(2):268–283. doi: 10.1016/0090-1229(81)90069-6. [DOI] [PubMed] [Google Scholar]
  18. Lance E. M., Medawar P. Quantitative studies on tissue transplantation immunity. IX. Induction of tolerance with antilymphocytic serum. Proc R Soc Lond B Biol Sci. 1969 Jul 22;173(1033):447–473. doi: 10.1098/rspb.1969.0071. [DOI] [PubMed] [Google Scholar]
  19. Longley R. E., Good R. A. Leukemia prevention and long-term survival of AKR mice transplanted with MHC-matched or MHC-mismatched bone marrow. Cell Immunol. 1986 Sep;101(2):476–492. doi: 10.1016/0008-8749(86)90159-0. [DOI] [PubMed] [Google Scholar]
  20. Loveland B. E., Hogarth P. M., Ceredig R., McKenzie I. F. Cells mediating graft rejection in the mouse. I. Lyt-1 cells mediate skin graft rejection. J Exp Med. 1981 May 1;153(5):1044–1057. doi: 10.1084/jem.153.5.1044. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. MAIN J. M., PREHN R. T. Successful skin homografts after the administration of high dosage X radiation and homologous bone marrow. J Natl Cancer Inst. 1955 Feb;15(4):1023–1029. [PubMed] [Google Scholar]
  22. Mayumi H., Good R. A. The necessity of both allogeneic antigens and stem cells for cyclophosphamide-induced skin allograft tolerance in mice. Transplant Proc. 1988 Feb;20(1 Suppl 1):139–141. [PubMed] [Google Scholar]
  23. Mayumi H., Himeno K., Shin T., Nomoto K. Drug-induced tolerance to allografts in mice. IV. Mechanisms and kinetics of cyclophosphamide-induced tolerance. Transplantation. 1985 Feb;39(2):209–215. doi: 10.1097/00007890-198502000-00019. [DOI] [PubMed] [Google Scholar]
  24. Mayumi H., Himeno K., Shin T., Nomoto K. Drug-induced tolerance to allografts in mice. VI. Tolerance induction in H-2-haplotype-identical strain combinations in mice. Transplantation. 1985 Aug;40(2):188–194. doi: 10.1097/00007890-198508000-00016. [DOI] [PubMed] [Google Scholar]
  25. Mayumi H., Himeno K., Tanaka K., Tokuda N., Fan J. L., Nomoto K. Drug-induced tolerance to allografts in mice. IX. Establishment of complete chimerism by allogeneic spleen cell transplantation from donors made tolerant to H-2-identical recipients. Transplantation. 1986 Oct;42(4):417–422. [PubMed] [Google Scholar]
  26. Mayumi H., Himeno K., Tanaka K., Tokuda N., Fan J. L., Nomoto K. Drug-induced tolerance to allografts in mice. XII. The relationships between tolerance, chimerism, and graft-versus-host disease. Transplantation. 1987 Aug;44(2):286–290. doi: 10.1097/00007890-198708000-00021. [DOI] [PubMed] [Google Scholar]
  27. Mayumi H., Himeno K., Tokuda N., Fan J. L., Nomoto K. Drug-induced tolerance to allografts in mice. X. Augmentation of split tolerance in murine combinations disparate at both H-2 and non-H-2 antigens by the use of spleen cells from donors preimmunized with recipient antigens. Immunobiology. 1987 May;174(3):274–291. doi: 10.1016/S0171-2985(87)80003-7. [DOI] [PubMed] [Google Scholar]
  28. Mayumi H., Himeno K., Tokuda N., Nomoto K. Drug-induced tolerance to allografts in mice. VII. Optimal protocol and mechanism of cyclophosphamide-induced tolerance in an H-2 haplotype-identical strain combination. Transplant Proc. 1986 Apr;18(2):363–369. [PubMed] [Google Scholar]
  29. Mayumi H., Kayashima K., Shin T., Nomoto K. Drug-induced tolerance to allografts in mice. V. Prolongation of skin graft survival in tolerant mice with combined immunosuppressive treatments. Transplantation. 1985 Mar;39(3):335–337. doi: 10.1097/00007890-198503000-00032. [DOI] [PubMed] [Google Scholar]
  30. Mayumi H., Nomoto K., Good R. A. A surgical technique for experimental free skin grafting in mice. Jpn J Surg. 1988 Sep;18(5):548–557. doi: 10.1007/BF02471489. [DOI] [PubMed] [Google Scholar]
  31. Mayumi H., Shin T., Himeno K., Nomoto K. Drug-induced tolerance to allografts in mice II. Tolerance to tumor allografts of large doses associated with rejection of skin allografts and tumor allografts of small doses. Immunobiology. 1985 Mar;169(2):147–161. doi: 10.1016/s0171-2985(85)80029-2. [DOI] [PubMed] [Google Scholar]
  32. Mayumi H., Tokuda N., Fan J. L., Himeno K., Nomoto K. Drug-induced tolerance to allografts in mice. XIII. Tolerance to the H-Y antigen. Transplant Proc. 1987 Apr;19(2):2975–2977. [PubMed] [Google Scholar]
  33. Muraoka S., Miller R. G. Cells in bone marrow and in T cell colonies grown from bone marrow can suppress generation of cytotoxic T lymphocytes directed against their self antigens. J Exp Med. 1980 Jul 1;152(1):54–71. doi: 10.1084/jem.152.1.54. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Nakamura T., Good R. A., Yasumizu R., Inoue S., Oo M. M., Hamashima Y., Ikehara S. Successful liver allografts in mice by combination with allogeneic bone marrow transplantation. Proc Natl Acad Sci U S A. 1986 Jun;83(12):4529–4532. doi: 10.1073/pnas.83.12.4529. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Onoé K., Fernandes G., Good R. A. Humoral and cell-mediated immune responses in fully allogeneic bone marrow chimera in mice. J Exp Med. 1980 Jan 1;151(1):115–132. doi: 10.1084/jem.151.1.115. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Onoé K., Good R. A., Yamamoto K. Anti-bacterial immunity to Listeria monocytogenes in allogeneic bone marrow chimera in mice. J Immunol. 1986 Jun 1;136(11):4264–4269. [PubMed] [Google Scholar]
  37. Onoé K., Yasumizu R., Oh-Ishi T., Kakinuma M., Good R. A., Morikawa K. Restricted antibody formation to sheep erythrocytes of allogeneic bone marrow chimeras histoincompatible at the K end of the H-2 complex. J Exp Med. 1981 Apr 1;153(4):1009–1014. doi: 10.1084/jem.153.4.1009. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Pierce G. E., Watts L. M., Clancy J., Jr Sublethal fractionated total-body irradiation and donor bone marrow infusion for induction of allograft tolerance. Transplantation. 1985 Mar;39(3):236–241. doi: 10.1097/00007890-198503000-00003. [DOI] [PubMed] [Google Scholar]
  39. Rapaport F. T., Watanabe K., Cannon F. D., Mollen N., Blumenstock D., Ferrebee J. W. Histocompatibility studies in a closely bred colony of dogs. J Exp Med. 1972 Nov 1;136(5):1080–1097. doi: 10.1084/jem.136.5.1080. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Rayfield L. S., Brent L. Tolerance, immunocompetence, and secondary disease in fully allogeneic radiation chimeras. Transplantation. 1983 Aug;36(2):183–189. doi: 10.1097/00007890-198308000-00015. [DOI] [PubMed] [Google Scholar]
  41. Rosenberg A. S., Mizuochi T., Sharrow S. O., Singer A. Phenotype, specificity, and function of T cell subsets and T cell interactions involved in skin allograft rejection. J Exp Med. 1987 May 1;165(5):1296–1315. doi: 10.1084/jem.165.5.1296. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. SANTOS G. W., GARVER R. M., COLE L. J. Acceptance of rat and mouse lung grafts by radiation chimeras. J Natl Cancer Inst. 1960 Jun;24:1367–1387. [PubMed] [Google Scholar]
  43. SANTOS G. W., OWENS A. H., Jr A COMPARISON OF THE EFFECTS OF SELECTED CYTOTOXIC AGENTS ON ALLOGENEIC SKIN GRAFT SURVIVAL IN RATS. Bull Johns Hopkins Hosp. 1965 May;116:327–340. [PubMed] [Google Scholar]
  44. Shin T., Mayumi H., Himeno K., Sanui H., Nomoto K. Drug-induced tolerance to allografts in mice. I. Difference between tumor and skin grafts. Transplantation. 1984 Jun;37(6):580–584. doi: 10.1097/00007890-198406000-00011. [DOI] [PubMed] [Google Scholar]
  45. Slavin S., Morecki S., Weigensberg M., Bar S., Weiss L. Functional clonal deletion versus suppressor cell-induced transplantation tolerance in chimeras prepared with a short course of total-lymphoid irradiation. Transplantation. 1986 Jun;41(6):680–687. doi: 10.1097/00007890-198606000-00003. [DOI] [PubMed] [Google Scholar]
  46. Slavin S., Strober S., Fuks Z., Kaplan H. S. Induction of specific tissue transplantation tolerance using fractionated total lymphoid irradiation in adult mice: long-term survival of allogeneic bone marrow and skin grafts. J Exp Med. 1977 Jul 1;146(1):34–48. doi: 10.1084/jem.146.1.34. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Slavin S., Strober S., Fuks Z., Kaplan H. S. Long-term survival of skin allografts in mice treated with fractionated total lymphoid irradiation. Science. 1976 Sep 24;193(4259):1252–1254. doi: 10.1126/science.785599. [DOI] [PubMed] [Google Scholar]
  48. Steinmuller D., Lofgreen J. S. Differential survival of skin and heart allografts in radiation chimaeras provides further evidence for Sk histocompatibility antigen. Nature. 1974 Apr 26;248(5451):796–797. doi: 10.1038/248796a0. [DOI] [PubMed] [Google Scholar]
  49. Stockman G. D., Trentin J. J. Cyclophosphamide-induced tolerance to equine globulin and to equine-anti-mouse-thymocyte globulin in adult mice. I. Studies on antigen and drug requirements. J Immunol. 1972 Jan;108(1):112–118. [PubMed] [Google Scholar]
  50. Storb R., Buckner C. D., Dillingham L. A., Thomas E. D. Cyclophosphamide regimens in rhesus monkey with and without marrow infusion. Cancer Res. 1970 Aug;30(8):2195–2203. [PubMed] [Google Scholar]
  51. Strober S. Natural suppressor (NS) cells, neonatal tolerance, and total lymphoid irradiation: exploring obscure relationships. Annu Rev Immunol. 1984;2:219–237. doi: 10.1146/annurev.iy.02.040184.001251. [DOI] [PubMed] [Google Scholar]
  52. Sugiura K., Inaba M., Ogata H., Yasumizu R., Inaba K., Good R. A., Ikehara S. Wheat germ agglutinin-positive cells in a stem cell-enriched fraction of mouse bone marrow have potent natural suppressor activity. Proc Natl Acad Sci U S A. 1988 Jul;85(13):4824–4826. doi: 10.1073/pnas.85.13.4824. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Tokuda N., Gondo H., Mayumi H., Taniguchi K., Himeno K., Nomoto K. Drug-induced in vitro tolerance to allogeneic antigens. I. Establishment of a tolerance induction system in a fully allogeneic murine combination. Transplantation. 1986 Sep;42(3):281–287. doi: 10.1097/00007890-198609000-00011. [DOI] [PubMed] [Google Scholar]
  54. Tokuda N., Mayumi H., Himeno K., Gondo H., Fan J. L., Nomoto K. Drug-induced in vitro tolerance to allogeneic antigens. II. Further analysis of in vitro-tolerized spleen cells in a fully allogeneic murine combination. Transplantation. 1988 Feb;45(2):464–470. doi: 10.1097/00007890-198802000-00044. [DOI] [PubMed] [Google Scholar]
  55. Wallenstein S., Zucker C. L., Fleiss J. L. Some statistical methods useful in circulation research. Circ Res. 1980 Jul;47(1):1–9. doi: 10.1161/01.res.47.1.1. [DOI] [PubMed] [Google Scholar]
  56. Wheelahan J., McKenzie I. F. The role of T4+ and Ly-2+ cells in skin graft rejection in the mouse. Transplantation. 1987 Aug;44(2):273–280. doi: 10.1097/00007890-198708000-00019. [DOI] [PubMed] [Google Scholar]
  57. Wood M. L., Monaco A. P. The effect of cyclophosphamide on the splecific unresponsiveness to skin allografts induced in ALS-treated mice infused with donor bone marrow. J Immunol. 1977 Apr;118(4):1456–1459. [PubMed] [Google Scholar]
  58. Yasumizu R., Sugiura K., Iwai H., Inaba M., Makino S., Ida T., Imura H., Hamashima Y., Good R. A., Ikehara S. Treatment of type 1 diabetes mellitus in non-obese diabetic mice by transplantation of allogeneic bone marrow and pancreatic tissue. Proc Natl Acad Sci U S A. 1987 Sep;84(18):6555–6557. doi: 10.1073/pnas.84.18.6555. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Zinkernagel R. M., Althage A., Callahan G., Welsh R. M., Jr On the immunocompetence of H-2 incompatible irradiation bone marrow chimeras. J Immunol. 1980 May;124(5):2356–2365. [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES