Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1989 Jan 1;169(1):161–173. doi: 10.1084/jem.169.1.161

Toxicity and therapeutic efficacy of high-dose interleukin 2. In vivo infusion of antibody to NK-1.1 attenuates toxicity without compromising efficacy against murine leukemia

PMCID: PMC2189181  PMID: 2783332

Abstract

In the current study we used the therapy of established murine leukemia to identify the lymphocyte subsets responsible for toxicity and for therapeutic efficacy of high-dose IL-2. Initial results confirmed that high-dose IL-2 induces marked proliferation of a variety of host cells, including NK cells, Lyt-2+ T cells, L3T4+ T cells, and B cells. Infusion of antibody to NK-1.1 depleted NK-1.1+ cells in vivo and greatly reduced the toxicity of IL-2, but did not decrease therapeutic efficacy. By marked contrast, depletion of host T cells, either Lyt-2+ or L3T4+, had no effect on toxicity but greatly reduced therapeutic efficacy. The requirement for host T cells for the curative effect of IL-2 gives credence to the possibility that substantial efficacy of high-dose IL-2 against established malignancy may require existent host antitumor immunity. Since the human tumors that have been shown to have the most substantial responses to IL-2 (i.e., malignant melanoma and renal cell carcinoma) are those long considered to be immunogenic in the autochthonous host, the current study predicts that for these, as well as other immunogenic human tumors, it should be possible to decrease the toxicity and thus increase the therapeutic index of IL-2 by selectively depleting NK cells in vivo.

Full Text

The Full Text of this article is available as a PDF (923.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ballas Z. K., Rasmussen W., van Otegham J. K. Lymphokine-activated killer (LAK) cells. II. Delineation of distinct murine LAK-precursor subpopulations. J Immunol. 1987 Mar 1;138(5):1647–1652. [PubMed] [Google Scholar]
  2. Beutler B., Milsark I. W., Cerami A. C. Passive immunization against cachectin/tumor necrosis factor protects mice from lethal effect of endotoxin. Science. 1985 Aug 30;229(4716):869–871. doi: 10.1126/science.3895437. [DOI] [PubMed] [Google Scholar]
  3. Cohen P. J., Lotze M. T., Roberts J. R., Rosenberg S. A., Jaffe E. S. The immunopathology of sequential tumor biopsies in patients treated with interleukin-2. Correlation of response with T-cell infiltration and HLA-DR expression. Am J Pathol. 1987 Nov;129(2):208–216. [PMC free article] [PubMed] [Google Scholar]
  4. Damle N. K., Doyle L. V., Bender J. R., Bradley E. C. Interleukin 2-activated human lymphocytes exhibit enhanced adhesion to normal vascular endothelial cells and cause their lysis. J Immunol. 1987 Mar 15;138(6):1779–1785. [PubMed] [Google Scholar]
  5. Damle N. K., Doyle L. V., Bradley E. C. Interleukin 2-activated human killer cells are derived from phenotypically heterogeneous precursors. J Immunol. 1986 Nov 1;137(9):2814–2822. [PubMed] [Google Scholar]
  6. Degliantoni G., Murphy M., Kobayashi M., Francis M. K., Perussia B., Trinchieri G. Natural killer (NK) cell-derived hematopoietic colony-inhibiting activity and NK cytotoxic factor. Relationship with tumor necrosis factor and synergism with immune interferon. J Exp Med. 1985 Nov 1;162(5):1512–1530. doi: 10.1084/jem.162.5.1512. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Dialynas D. P., Quan Z. S., Wall K. A., Pierres A., Quintáns J., Loken M. R., Pierres M., Fitch F. W. Characterization of the murine T cell surface molecule, designated L3T4, identified by monoclonal antibody GK1.5: similarity of L3T4 to the human Leu-3/T4 molecule. J Immunol. 1983 Nov;131(5):2445–2451. [PubMed] [Google Scholar]
  8. Dialynas D. P., Wilde D. B., Marrack P., Pierres A., Wall K. A., Havran W., Otten G., Loken M. R., Pierres M., Kappler J. Characterization of the murine antigenic determinant, designated L3T4a, recognized by monoclonal antibody GK1.5: expression of L3T4a by functional T cell clones appears to correlate primarily with class II MHC antigen-reactivity. Immunol Rev. 1983;74:29–56. doi: 10.1111/j.1600-065x.1983.tb01083.x. [DOI] [PubMed] [Google Scholar]
  9. Ettinghausen S. E., Lipford E. H., 3rd, Mulé J. J., Rosenberg S. A. Systemic administration of recombinant interleukin 2 stimulates in vivo lymphoid cell proliferation in tissues. J Immunol. 1985 Aug;135(2):1488–1497. [PubMed] [Google Scholar]
  10. Gately M. K., Anderson T. D., Hayes T. J. Role of asialo-GM1-positive lymphoid cells in mediating the toxic effects of recombinant IL-2 in mice. J Immunol. 1988 Jul 1;141(1):189–200. [PubMed] [Google Scholar]
  11. Gillis S., Ferm M. M., Ou W., Smith K. A. T cell growth factor: parameters of production and a quantitative microassay for activity. J Immunol. 1978 Jun;120(6):2027–2032. [PubMed] [Google Scholar]
  12. Greenberg P. D., Kern D. E., Cheever M. A. Therapy of disseminated murine leukemia with cyclophosphamide and immune Lyt-1+,2- T cells. Tumor eradication does not require participation of cytotoxic T cells. J Exp Med. 1985 May 1;161(5):1122–1134. doi: 10.1084/jem.161.5.1122. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Grimm E. A., Mazumder A., Zhang H. Z., Rosenberg S. A. Lymphokine-activated killer cell phenomenon. Lysis of natural killer-resistant fresh solid tumor cells by interleukin 2-activated autologous human peripheral blood lymphocytes. J Exp Med. 1982 Jun 1;155(6):1823–1841. doi: 10.1084/jem.155.6.1823. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Itoh K., Tilden A. B., Balch C. M. Interleukin 2 activation of cytotoxic T-lymphocytes infiltrating into human metastatic melanomas. Cancer Res. 1986 Jun;46(6):3011–3017. [PubMed] [Google Scholar]
  15. Kalland T., Belfrage H., Bhiladvala P., Hedlund G. Analysis of the murine lymphokine-activated killer (LAK) cell phenomenon: dissection of effectors and progenitors into NK- and T-like cells. J Immunol. 1987 Jun 1;138(11):3640–3645. [PubMed] [Google Scholar]
  16. Kasai M., Iwamori M., Nagai Y., Okumura K., Tada T. A glycolipid on the surface of mouse natural killer cells. Eur J Immunol. 1980 Mar;10(3):175–180. doi: 10.1002/eji.1830100304. [DOI] [PubMed] [Google Scholar]
  17. Kern D. E., Klarnet J. P., Jensen M. C., Greenberg P. D. Requirement for recognition of class II molecules and processed tumor antigen for optimal generation of syngeneic tumor-specific class I-restricted CTL. J Immunol. 1986 Jun 1;136(11):4303–4310. [PubMed] [Google Scholar]
  18. Koo G. C., Dumont F. J., Tutt M., Hackett J., Jr, Kumar V. The NK-1.1(-) mouse: a model to study differentiation of murine NK cells. J Immunol. 1986 Dec 15;137(12):3742–3747. [PubMed] [Google Scholar]
  19. Koo G. C., Peppard J. R. Establishment of monoclonal anti-Nk-1.1 antibody. Hybridoma. 1984 Fall;3(3):301–303. doi: 10.1089/hyb.1984.3.301. [DOI] [PubMed] [Google Scholar]
  20. Lotze M. T., Grimm E. A., Mazumder A., Strausser J. L., Rosenberg S. A. Lysis of fresh and cultured autologous tumor by human lymphocytes cultured in T-cell growth factor. Cancer Res. 1981 Nov;41(11 Pt 1):4420–4425. [PubMed] [Google Scholar]
  21. Lotze M. T., Matory Y. L., Ettinghausen S. E., Rayner A. A., Sharrow S. O., Seipp C. A., Custer M. C., Rosenberg S. A. In vivo administration of purified human interleukin 2. II. Half life, immunologic effects, and expansion of peripheral lymphoid cells in vivo with recombinant IL 2. J Immunol. 1985 Oct;135(4):2865–2875. [PubMed] [Google Scholar]
  22. Lotze M. T., Matory Y. L., Rayner A. A., Ettinghausen S. E., Vetto J. T., Seipp C. A., Rosenberg S. A. Clinical effects and toxicity of interleukin-2 in patients with cancer. Cancer. 1986 Dec 15;58(12):2764–2772. doi: 10.1002/1097-0142(19861215)58:12<2764::aid-cncr2820581235>3.0.co;2-z. [DOI] [PubMed] [Google Scholar]
  23. Malek T. R., Robb R. J., Shevach E. M. Identification and initial characterization of a rat monoclonal antibody reactive with the murine interleukin 2 receptor-ligand complex. Proc Natl Acad Sci U S A. 1983 Sep;80(18):5694–5698. doi: 10.1073/pnas.80.18.5694. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Matory Y. L., Chang A. E., Lipford E. H., 3rd, Braziel R., Hyatt C. L., McDonald H. D., Rosenberg S. A. Toxicity of recombinant human interleukin-2 in rats following intravenous infusion. J Biol Response Mod. 1985 Aug;4(4):377–390. [PubMed] [Google Scholar]
  25. Merluzzi V. J., Welte K., Last-Barney K., Mertelsmann R., Souza L., Boone T., Savage D. M., Quinn D., O'Reilly R. J. Production and response to interleukin 2 in vitro and in vivo after bone marrow transplantation in mice. J Immunol. 1985 Apr;134(4):2426–2430. [PubMed] [Google Scholar]
  26. Mulé J. J., Yang J. C., Afreniere R. L., Shu S. Y., Rosenberg S. A. Identification of cellular mechanisms operational in vivo during the regression of established pulmonary metastases by the systemic administration of high-dose recombinant interleukin 2. J Immunol. 1987 Jul 1;139(1):285–294. [PubMed] [Google Scholar]
  27. Muul L. M., Spiess P. J., Director E. P., Rosenberg S. A. Identification of specific cytolytic immune responses against autologous tumor in humans bearing malignant melanoma. J Immunol. 1987 Feb 1;138(3):989–995. [PubMed] [Google Scholar]
  28. Phillips J. H., Lanier L. L. Dissection of the lymphokine-activated killer phenomenon. Relative contribution of peripheral blood natural killer cells and T lymphocytes to cytolysis. J Exp Med. 1986 Sep 1;164(3):814–825. doi: 10.1084/jem.164.3.814. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Rosenberg S. A., Lotze M. T., Muul L. M., Leitman S., Chang A. E., Ettinghausen S. E., Matory Y. L., Skibber J. M., Shiloni E., Vetto J. T. Observations on the systemic administration of autologous lymphokine-activated killer cells and recombinant interleukin-2 to patients with metastatic cancer. N Engl J Med. 1985 Dec 5;313(23):1485–1492. doi: 10.1056/NEJM198512053132327. [DOI] [PubMed] [Google Scholar]
  30. Rosenberg S. A., Mulé J. J., Spiess P. J., Reichert C. M., Schwarz S. L. Regression of established pulmonary metastases and subcutaneous tumor mediated by the systemic administration of high-dose recombinant interleukin 2. J Exp Med. 1985 May 1;161(5):1169–1188. doi: 10.1084/jem.161.5.1169. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Rosenstein M., Ettinghausen S. E., Rosenberg S. A. Extravasation of intravascular fluid mediated by the systemic administration of recombinant interleukin 2. J Immunol. 1986 Sep 1;137(5):1735–1742. [PubMed] [Google Scholar]
  32. Rosenstein M., Yron I., Kaufmann Y., Rosenberg S. A. Lymphokine-activated killer cells: lysis of fresh syngeneic natural killer-resistant murine tumor cells by lymphocytes cultured in interleukin 2. Cancer Res. 1984 May;44(5):1946–1953. [PubMed] [Google Scholar]
  33. Sarmiento M., Glasebrook A. L., Fitch F. W. IgG or IgM monoclonal antibodies reactive with different determinants on the molecular complex bearing Lyt 2 antigen block T cell-mediated cytolysis in the absence of complement. J Immunol. 1980 Dec;125(6):2665–2672. [PubMed] [Google Scholar]
  34. Sondel P. M., Hank J. A., Kohler P. C., Chen B. P., Minkoff D. Z., Molenda J. A. Destruction of autologous human lymphocytes by interleukin 2-activated cytotoxic cells. J Immunol. 1986 Jul 15;137(2):502–511. [PubMed] [Google Scholar]
  35. Stout R. D., Schwarting G. A., Suttles J. Evidence that expression of asialo-GM1 may be associated with cell activation. Correlation of asialo-GM1 expression with increased total cellular RNA and protein content in normal thymocyte and spleen cell populations. J Immunol. 1987 Oct 1;139(7):2123–2129. [PubMed] [Google Scholar]
  36. Suttles J., Schwarting G. A., Stout R. D. Flow cytometric analysis reveals the presence of asialo GM1 on the surface membrane of alloimmune cytotoxic T lymphocytes. J Immunol. 1986 Mar 1;136(5):1586–1591. [PubMed] [Google Scholar]
  37. Swain S. L. Significance of Lyt phenotypes: Lyt2 antibodies block activities of T cells that recognize class 1 major histocompatibility complex antigens regardless of their function. Proc Natl Acad Sci U S A. 1981 Nov;78(11):7101–7105. doi: 10.1073/pnas.78.11.7101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Thompson J. A., Peace D. J., Klarnet J. P., Kern D. E., Greenberg P. D., Cheever M. A. Eradication of disseminated murine leukemia by treatment with high-dose interleukin 2. J Immunol. 1986 Dec 1;137(11):3675–3680. [PubMed] [Google Scholar]
  39. Tilden A. B., Itoh K., Balch C. M. Human lymphokine-activated killer (LAK) cells: identification of two types of effector cells. J Immunol. 1987 Feb 15;138(4):1068–1073. [PubMed] [Google Scholar]
  40. Trinchieri G., Matsumoto-Kobayashi M., Clark S. C., Seehra J., London L., Perussia B. Response of resting human peripheral blood natural killer cells to interleukin 2. J Exp Med. 1984 Oct 1;160(4):1147–1169. doi: 10.1084/jem.160.4.1147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Weber J. S., Jay G., Tanaka K., Rosenberg S. A. Immunotherapy of a murine tumor with interleukin 2. Increased sensitivity after MHC class I gene transfection. J Exp Med. 1987 Dec 1;166(6):1716–1733. doi: 10.1084/jem.166.6.1716. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Wiltrout R. H., Santoni A., Peterson E. S., Knott D. C., Overton W. R., Herberman R. B., Holden H. T. Reactivity of anti-asialo GM1 serum with tumoricidal and non-tumoricidal mouse macrophages. J Leukoc Biol. 1985 May;37(5):597–614. doi: 10.1002/jlb.37.5.597. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES