Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1985 May;162(2):784–789. doi: 10.1128/jb.162.2.784-789.1985

Legume agglutinins that bind to Rhizobium meliloti.

R Seegers, T A LaRue
PMCID: PMC218920  PMID: 3988714

Abstract

A protein found in seeds and roots of alfalfa (Medicago sativa) was implicated in the specificity of the infection process, based on its binding to the symbiont Rhizobium meliloti. We found an agglutinin with similar properties in seeds and roots of sweet clover (Melilotis alba). The sweet clover differed from alfalfa in nodulation by a mutant strain of R. meliloti, but the agglutinins were indistinguishable by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, Rhizobium agglutination, and cross-reactivity to antibodies. Similar agglutinins binding R. meliloti were found in seeds of legumes from different cross-inoculation groups, including soybean (Glycine max), cowpea (Vigna unguiculata), pea (Pisum sativum L), and mung bean (Vigna mungo). The agglutinins from these legumes were recognized by antibodies raised against the agglutinins of alfalfa and sweet clover. Seeds of corn (Zea mays) and tomato (Lycopersicon esculentum) contained a protein similar to the legume agglutinin, but it did not react with the antibodies. We conclude that the alfalfa agglutinin is representative of a common legume protein and that there is no evidence for its role in specificity or nodule initiation.

Full text

PDF
784

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  2. Fett W. F., Sequeira L. A New Bacterial Agglutinin from Soybean: I. ISOLATION, PARTIAL PURIFICATION, AND CHARACTERIZATION. Plant Physiol. 1980 Nov;66(5):847–852. doi: 10.1104/pp.66.5.847. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Handelsman J., Ugalde R. A., Brill W. J. Rhizobium meliloti competitiveness and the alfalfa agglutinin. J Bacteriol. 1984 Mar;157(3):703–707. doi: 10.1128/jb.157.3.703-707.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  5. Paau A. S., Leps W. T., Brill W. J. Agglutinin from Alfalfa Necessary for Binding and Nodulation by Rhizobium meliloti. Science. 1981 Sep 25;213(4515):1513–1515. doi: 10.1126/science.213.4515.1513. [DOI] [PubMed] [Google Scholar]
  6. Wray W., Boulikas T., Wray V. P., Hancock R. Silver staining of proteins in polyacrylamide gels. Anal Biochem. 1981 Nov 15;118(1):197–203. doi: 10.1016/0003-2697(81)90179-2. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES