Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1985 May;162(2):790–793. doi: 10.1128/jb.162.2.790-793.1985

Dielectrophoretic behavior of yeast cells: effect of growth sources and cell wall and a comparison with fungal spores.

M C López, F J Iglesias, C Santamaría, A Domínguez
PMCID: PMC218921  PMID: 3886635

Abstract

Saccharomyces cerevisiae showed different dielectrophoretic behavior depending on the source of carbon for growth. Growth on fermentable carbon sources produced a dielectrophoretic response that decreased according to the amount of sugar present in the culture medium. Growth on nonfermentable carbon sources produced a constant dielectrophoretic yield, independent of the amount and source of carbon present in the medium. The dielectrophoretic yield, however, was independent of the nitrogen source. The yield spectrum for S. cerevisiae protoplasts was similar to that for the cells, although a decrease in the absolute value was observed. This decrease could be explained by the reduction in cell size and by assuming that the cell wall contributes a negative net charge to the yield. Fungal spores responded to the nonuniform electric field in the same range of frequencies as assayed for yeast cells.

Full text

PDF
790

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ballou C. Structure and biosynthesis of the mannan component of the yeast cell envelope. Adv Microb Physiol. 1976;14(11):93–158. doi: 10.1016/s0065-2911(08)60227-1. [DOI] [PubMed] [Google Scholar]
  2. Crane J. S., Pohl H. A. Theoretical models of cellular dielectrophoresis. J Theor Biol. 1972 Oct;37(1):15–41. doi: 10.1016/0022-5193(72)90113-0. [DOI] [PubMed] [Google Scholar]
  3. Denis C. L., Ciriacy M., Young E. T. A positive regulatory gene is required for accumulation of the functional messenger RNA for the glucose-repressible alcohol dehydrogenase from Saccharomyces cerevisiae. J Mol Biol. 1981 Jun 5;148(4):355–368. doi: 10.1016/0022-2836(81)90181-9. [DOI] [PubMed] [Google Scholar]
  4. Entian K. D., Zimmermann F. K., Scheel I. A partial defect in carbon catabolite repression in mutants of Saccharomyces cerevisiae with reduced hexose phosphyorylation. Mol Gen Genet. 1977 Nov 4;156(1):99–105. doi: 10.1007/BF00272258. [DOI] [PubMed] [Google Scholar]
  5. Iglesias F. J., Lopez M. C., Santamaría C., Domínguez A. Dielectrophoretic properties of yeast cells dividing by budding and by transversal fission. Biochim Biophys Acta. 1984 Jun 19;804(2):221–229. doi: 10.1016/0167-4889(84)90153-8. [DOI] [PubMed] [Google Scholar]
  6. Pohl H. A., Crane J. S. Dielectrophoresis of cells. Biophys J. 1971 Sep;11(9):711–727. doi: 10.1016/S0006-3495(71)86249-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Pohl H. A., Crane J. S. Dielectrophoretic force. J Theor Biol. 1972 Oct;37(1):1–13. doi: 10.1016/0022-5193(72)90112-9. [DOI] [PubMed] [Google Scholar]
  8. Serrano R. In vivo glucose activation of the yeast plasma membrane ATPase. FEBS Lett. 1983 May 30;156(1):11–14. doi: 10.1016/0014-5793(83)80237-3. [DOI] [PubMed] [Google Scholar]
  9. Wickerham L. J. A Critical Evaluation of the Nitrogen Assimilation Tests Commonly Used in the Classification of Yeasts. J Bacteriol. 1946 Sep;52(3):293–301. [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES