Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1989 Apr 1;169(4):1347–1359. doi: 10.1084/jem.169.4.1347

Human cytomegalovirus induces stage-specific embryonic antigen 1 in differentiating human teratocarcinoma cells and fibroblasts

PMCID: PMC2189232  PMID: 2564417

Abstract

Cell surface expression of stage specific embryonic antigen 1 (SSEA-1), or Lex (III3 FucnLC4), was induced in differentiated human teratocarcinoma cells and in human diploid fibroblasts 3-6 d after infection with human cytomegalovirus (HCMV). In parallel, fucosylated lactoseries glycolipids bearing the SSEA-1/Lex epitope were readily detected in the infected cells but not in the uninfected cells. HCMV infection also results in altered expression of several glycosyltransferases. SSEA-1/Lex induction is probably a consequence of both increased expression of beta 1----3N- acetylglucosaminyltransferase, which catalyzes the rate-limiting step in lactoseries core chain synthesis, and subtle alterations in the relative competition for common precursor structures at key points in the biosynthetic pathway. Since SSEA-1 has been suggested to play a role in some morphogenetic cell-cell interactions during embryonic development, the induction of this antigen at inappropriate times might provide one mechanism whereby intrauterine infection with HCMV can damage the developing fetal nervous system.

Full Text

The Full Text of this article is available as a PDF (886.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adachi M., Hayami M., Kashiwagi N., Mizuta T., Ohta Y., Gill M. J., Matheson D. S., Tamaoki T., Shiozawa C., Hakomori S. Expression of Ley antigen in human immunodeficiency virus-infected human T cell lines and in peripheral lymphocytes of patients with acquired immune deficiency syndrome (AIDS) and AIDS-related complex (ARC). J Exp Med. 1988 Feb 1;167(2):323–331. doi: 10.1084/jem.167.2.323. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Andrews P. W., Bronson D. L., Benham F., Strickland S., Knowles B. B. A comparative study of eight cell lines derived from human testicular teratocarcinoma. Int J Cancer. 1980 Sep 15;26(3):269–280. doi: 10.1002/ijc.2910260304. [DOI] [PubMed] [Google Scholar]
  3. Andrews P. W., Damjanov I., Simon D., Banting G. S., Carlin C., Dracopoli N. C., Føgh J. Pluripotent embryonal carcinoma clones derived from the human teratocarcinoma cell line Tera-2. Differentiation in vivo and in vitro. Lab Invest. 1984 Feb;50(2):147–162. [PubMed] [Google Scholar]
  4. Andrews P. W., Gönczöl E., Plotkin S. A., Dignazio M., Oosterhuis J. W. Differentiation of TERA-2 human embryonal carcinoma cells into neurons and HCMV permissive cells. Induction by agents other than retinoic acid. Differentiation. 1986;31(2):119–126. doi: 10.1111/j.1432-0436.1986.tb00392.x. [DOI] [PubMed] [Google Scholar]
  5. Andrews P. W. Retinoic acid induces neuronal differentiation of a cloned human embryonal carcinoma cell line in vitro. Dev Biol. 1984 Jun;103(2):285–293. doi: 10.1016/0012-1606(84)90316-6. [DOI] [PubMed] [Google Scholar]
  6. Barlow J. J., DiCioccio R. A., Dillard P. H., Blumenson L. E., Matta K. L. Frequency of an allele for low activity of alpha-L-fucosidase in sera: possible increase in epithelial ovarian cancer patients. J Natl Cancer Inst. 1981 Nov;67(5):1005–1009. [PubMed] [Google Scholar]
  7. Bird J. M., Kimber S. J. Oligosaccharides containing fucose linked alpha(1-3) and alpha(1-4) to N-acetylglucosamine cause decompaction of mouse morulae. Dev Biol. 1984 Aug;104(2):449–460. doi: 10.1016/0012-1606(84)90101-5. [DOI] [PubMed] [Google Scholar]
  8. Davis M. G., Kenney S. C., Kamine J., Pagano J. S., Huang E. S. Immediate-early gene region of human cytomegalovirus trans-activates the promoter of human immunodeficiency virus. Proc Natl Acad Sci U S A. 1987 Dec;84(23):8642–8646. doi: 10.1073/pnas.84.23.8642. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Dodd J., Jessell T. M. Cell surface glycoconjugates and carbohydrate-binding proteins: possible recognition signals in sensory neurone development. J Exp Biol. 1986 Sep;124:225–238. doi: 10.1242/jeb.124.1.225. [DOI] [PubMed] [Google Scholar]
  10. Dodd J., Jessell T. M. Lactoseries carbohydrates specify subsets of dorsal root ganglion neurons projecting to the superficial dorsal horn of rat spinal cord. J Neurosci. 1985 Dec;5(12):3278–3294. doi: 10.1523/JNEUROSCI.05-12-03278.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Eisenbarth G. S., Walsh F. S., Nirenberg M. Monoclonal antibody to a plasma membrane antigen of neurons. Proc Natl Acad Sci U S A. 1979 Oct;76(10):4913–4917. doi: 10.1073/pnas.76.10.4913. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Estes J. E., Huang E. S. Stimulation of cellular thymidine kinases by human cytomegalovirus. J Virol. 1977 Oct;24(1):13–21. doi: 10.1128/jvi.24.1.13-21.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. FOLCH J., ARSOVE S., MEATH J. A. Isolation of brain strandin, a new type of large molecule tissue component. J Biol Chem. 1951 Aug;191(2):819–831. [PubMed] [Google Scholar]
  14. Fenderson B. A., Andrews P. W., Nudelman E., Clausen H., Hakomori S. Glycolipid core structure switching from globo- to lacto- and ganglio-series during retinoic acid-induced differentiation of TERA-2-derived human embryonal carcinoma cells. Dev Biol. 1987 Jul;122(1):21–34. doi: 10.1016/0012-1606(87)90328-9. [DOI] [PubMed] [Google Scholar]
  15. Fenderson B. A., Nichols E. J., Clausen H., Hakomori S. I. A monoclonal antibody defining a binary N-acetyllactosaminyl structure in lactoisooctaosylceramide (IV6Gal beta 1----4GlcNAcnLc6): a useful probe for determining differential glycosylation patterns between normal and transformed human fibroblasts. Mol Immunol. 1986 Jul;23(7):747–754. doi: 10.1016/0161-5890(86)90086-6. [DOI] [PubMed] [Google Scholar]
  16. Fenderson B. A., Zehavi U., Hakomori S. A multivalent lacto-N-fucopentaose III-lysyllysine conjugate decompacts preimplantation mouse embryos, while the free oligosaccharide is ineffective. J Exp Med. 1984 Nov 1;160(5):1591–1596. doi: 10.1084/jem.160.5.1591. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Fox N., Damjanov I., Knowles B. B., Solter D. Immunohistochemical localization of the mouse stage-specific embryonic antigen 1 in human tissues and tumors. Cancer Res. 1983 Feb;43(2):669–678. [PubMed] [Google Scholar]
  18. Fox N., Damjanov I., Martinez-Hernandez A., Knowles B. B., Solter D. Immunohistochemical localization of the early embryonic antigen (SSEA-1) in postimplantation mouse embryos and fetal and adult tissues. Dev Biol. 1981 Apr 30;83(2):391–398. doi: 10.1016/0012-1606(81)90487-5. [DOI] [PubMed] [Google Scholar]
  19. Furlini G., Ripalti A., Landini M. P., La Placa M. Increased levels of ADP ribosylation during cytomegalovirus replication in human embryo fibroblasts. Microbiologica. 1984 Jul;7(3):279–285. [PubMed] [Google Scholar]
  20. Furukawa T., Gonczol E., Starr S., Tolpin M. D., Arbeter A., Plotkin S. A. HCMV envelope antigens induce both humoral and cellular immunity in guinea pigs. Proc Soc Exp Biol Med. 1984 Feb;175(2):243–250. doi: 10.3181/00379727-175-41796. [DOI] [PubMed] [Google Scholar]
  21. Gooi H. C., Feizi T., Kapadia A., Knowles B. B., Solter D., Evans M. J. Stage-specific embryonic antigen involves alpha 1 goes to 3 fucosylated type 2 blood group chains. Nature. 1981 Jul 9;292(5819):156–158. doi: 10.1038/292156a0. [DOI] [PubMed] [Google Scholar]
  22. Gönczöl E., Andrews P. W., Plotkin S. A. Cytomegalovirus infection of human teratocarcinoma cells in culture. J Gen Virol. 1985 Mar;66(Pt 3):509–515. doi: 10.1099/0022-1317-66-3-509. [DOI] [PubMed] [Google Scholar]
  23. Gönczöl E., Andrews P. W., Plotkin S. A. Cytomegalovirus replicates in differentiated but not in undifferentiated human embryonal carcinoma cells. Science. 1984 Apr 13;224(4645):159–161. doi: 10.1126/science.6322309. [DOI] [PubMed] [Google Scholar]
  24. Gönczöl E., Plotkin S. A. Cells infected with human cytomegalovirus release a factor(s) that stimulates cell DNA synthesis. J Gen Virol. 1984 Oct;65(Pt 10):1833–1837. doi: 10.1099/0022-1317-65-10-1833. [DOI] [PubMed] [Google Scholar]
  25. HAYFLICK L. THE LIMITED IN VITRO LIFETIME OF HUMAN DIPLOID CELL STRAINS. Exp Cell Res. 1965 Mar;37:614–636. doi: 10.1016/0014-4827(65)90211-9. [DOI] [PubMed] [Google Scholar]
  26. Hansson G. C., Karlsson K. A., Larson G., McKibbin J. M., Blaszczyk M., Herlyn M., Steplewski Z., Koprowski H. Mouse monoclonal antibodies against human cancer cell lines with specificities for blood group and related antigens. Characterization by antibody binding to glycosphingolipids in a chromatogram binding assay. J Biol Chem. 1983 Apr 10;258(7):4091–4097. [PubMed] [Google Scholar]
  27. Hermiston T. W., Malone C. L., Witte P. R., Stinski M. F. Identification and characterization of the human cytomegalovirus immediate-early region 2 gene that stimulates gene expression from an inducible promoter. J Virol. 1987 Oct;61(10):3214–3221. doi: 10.1128/jvi.61.10.3214-3221.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Holmes E. H. Characterization of a beta 1----3-N-acetylglucosaminyltransferase associated with synthesis of type 1 and type 2 lacto-series tumor-associated antigens from the human colonic adenocarcinoma cell line SW403. Arch Biochem Biophys. 1988 Jan;260(1):461–468. doi: 10.1016/0003-9861(88)90470-5. [DOI] [PubMed] [Google Scholar]
  29. Holmes E. H., Hakomori S., Ostrander G. K. Synthesis of type 1 and 2 lacto series glycolipid antigens in human colonic adenocarcinoma and derived cell lines is due to activation of a normally unexpressed beta 1----3N-acetylglucosaminyltransferase. J Biol Chem. 1987 Nov 15;262(32):15649–15658. [PubMed] [Google Scholar]
  30. Isom H. C. Stimulation of ornithine decarboxylase by human cytomegalovirus. J Gen Virol. 1979 Feb;42(2):265–278. doi: 10.1099/0022-1317-42-2-265. [DOI] [PubMed] [Google Scholar]
  31. Jacobs J. P., Jones C. M., Baille J. P. Characteristics of a human diploid cell designated MRC-5. Nature. 1970 Jul 11;227(5254):168–170. doi: 10.1038/227168a0. [DOI] [PubMed] [Google Scholar]
  32. Kannagi R., Nudelman E., Levery S. B., Hakomori S. A series of human erythrocyte glycosphingolipids reacting to the monoclonal antibody directed to a developmentally regulated antigen SSEA-1. J Biol Chem. 1982 Dec 25;257(24):14865–14874. [PubMed] [Google Scholar]
  33. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  34. LaFemina R., Hayward G. S. Constitutive and retinoic acid-inducible expression of cytomegalovirus immediate-early genes in human teratocarcinoma cells. J Virol. 1986 May;58(2):434–440. doi: 10.1128/jvi.58.2.434-440.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Ledeen R. W., Yu R. K. Gangliosides: structure, isolation, and analysis. Methods Enzymol. 1982;83:139–191. doi: 10.1016/0076-6879(82)83012-7. [DOI] [PubMed] [Google Scholar]
  36. Magnani J. L., Ball E. D., Fanger M. W., Hakomori S. I., Ginsburg V. Monoclonal antibodies PMN 6, PMN 29, and PM-81 bind differently to glycolipids containing a sugar sequence occurring in lacto-N-fucopentaose III. Arch Biochem Biophys. 1984 Sep;233(2):501–506. doi: 10.1016/0003-9861(84)90473-9. [DOI] [PubMed] [Google Scholar]
  37. Martin G. R. Teratocarcinomas and mammalian embryogenesis. Science. 1980 Aug 15;209(4458):768–776. doi: 10.1126/science.6250214. [DOI] [PubMed] [Google Scholar]
  38. Nakakuma H., Sanai Y., Shiroki K., Nagai Y. Gene-regulated expression of glycolipids: appearance of GD3 ganglioside in rat cells on transfection with transforming gene E1 of human adenovirus type 12 DNA and its transcriptional subunits. J Biochem. 1984 Nov;96(5):1471–1480. doi: 10.1093/oxfordjournals.jbchem.a134976. [DOI] [PubMed] [Google Scholar]
  39. Nelson J. A., Groudine M. Transcriptional regulation of the human cytomegalovirus major immediate-early gene is associated with induction of DNase I-hypersensitive sites. Mol Cell Biol. 1986 Feb;6(2):452–461. doi: 10.1128/mcb.6.2.452. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Pasleau F., Tocci M. J., Leung F., Kopchick J. J. Growth hormone gene expression in eukaryotic cells directed by the Rous sarcoma virus long terminal repeat or cytomegalovirus immediate-early promoter. Gene. 1985;38(1-3):227–232. doi: 10.1016/0378-1119(85)90221-5. [DOI] [PubMed] [Google Scholar]
  41. Pizzorno M. C., O'Hare P., Sha L., LaFemina R. L., Hayward G. S. trans-activation and autoregulation of gene expression by the immediate-early region 2 gene products of human cytomegalovirus. J Virol. 1988 Apr;62(4):1167–1179. doi: 10.1128/jvi.62.4.1167-1179.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Plotkin S. A., Weibel R. E., Alpert G., Starr S. E., Friedman H. M., Preblud S. R., Hoxie J. Resistance of seropositive volunteers to subcutaneous challenge with low-passage human cytomegalovirus. J Infect Dis. 1985 Apr;151(4):737–739. doi: 10.1093/infdis/151.4.737. [DOI] [PubMed] [Google Scholar]
  43. ROWE W. P., HARTLEY J. W., WATERMAN S., TURNER H. C., HUEBNER R. J. Cytopathogenic agent resembling human salivary gland virus recovered from tissue cultures of human adenoids. Proc Soc Exp Biol Med. 1956 Jun;92(2):418–424. [PubMed] [Google Scholar]
  44. Regan L. J., Dodd J., Barondes S. H., Jessell T. M. Selective expression of endogenous lactose-binding lectins and lactoseries glycoconjugates in subsets of rat sensory neurons. Proc Natl Acad Sci U S A. 1986 Apr;83(7):2248–2252. doi: 10.1073/pnas.83.7.2248. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Rodgers B. C., Scott D. M., Mundin J., Sissons J. G. Monocyte-derived inhibitor of interleukin 1 induced by human cytomegalovirus. J Virol. 1985 Sep;55(3):527–532. doi: 10.1128/jvi.55.3.527-532.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Solter D., Knowles B. B. Monoclonal antibody defining a stage-specific mouse embryonic antigen (SSEA-1). Proc Natl Acad Sci U S A. 1978 Nov;75(11):5565–5569. doi: 10.1073/pnas.75.11.5565. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Stagno S., Pass R. F., Dworsky M. E., Britt W. J., Alford C. A. Congenital and perinatal cytomegalovirus infections: clinical characteristics and pathogenic factors. Birth Defects Orig Artic Ser. 1984;20(1):65–85. [PubMed] [Google Scholar]
  48. Tanaka S., Ihara S., Watanabe Y. Human cytomegalovirus induces DNA-dependent RNA polymerases in human diploid cells. Virology. 1978 Aug;89(1):179–185. doi: 10.1016/0042-6822(78)90050-8. [DOI] [PubMed] [Google Scholar]
  49. Wentworth B. B., French L. Plaque assay of cytomegalovirus strains of human origin. Proc Soc Exp Biol Med. 1970 Nov;135(2):253–258. doi: 10.3181/00379727-135-35031. [DOI] [PubMed] [Google Scholar]
  50. Wiels J., Holmes E. H., Cochran N., Tursz T., Hakomori S. Enzymatic and organizational difference in expression of a Burkitt lymphoma-associated antigen (globotriaosylceramide) in Burkitt lymphoma and lymphoblastoid cell lines. J Biol Chem. 1984 Dec 10;259(23):14783–14787. [PubMed] [Google Scholar]
  51. Yamamoto M., Boyer A. M., Schwarting G. A. Fucose-containing glycolipids are stage- and region-specific antigens in developing embryonic brain of rodents. Proc Natl Acad Sci U S A. 1985 May;82(9):3045–3049. doi: 10.1073/pnas.82.9.3045. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Yamanishi K., Rapp F. Production of plasminogen activator by human and hamster cells infected with human cytomegalovirus. J Virol. 1979 Aug;31(2):415–419. doi: 10.1128/jvi.31.2.415-419.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Závada V., Erban V., Rezácová D., Vonka V. Thymidine-kinase in cytomegalovirus infected cells. Arch Virol. 1976;52(4):333–339. doi: 10.1007/BF01315622. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES