Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1989 Apr 1;169(4):1373–1389. doi: 10.1084/jem.169.4.1373

Monoclonal antibody to a triggering structure expressed on rat natural killer cells and adherent lymphokine-activated killer cells

PMCID: PMC2189246  PMID: 2466943

Abstract

To study the cellular structures involved in NK and lymphokine- activated killer (LAK) cell function, we have produced a panel of mAbs that modulate the cytolytic function of a population of cells with LAK activity that derive from large granular lymphocyte (LGL)/NK cells (adherent LAK [A-LAK] cells). In this report, we describe an mAb (3.2.3; IgG1k) that recognizes a triggering structure that is expressed on rat LGL/NK cells and A-LAK cells. This epitope is also expressed on polymorphonuclear leukocytes (PMN). The expression of the epitope identified by mAb 3.2.3 increased progressively on A-LAK cells after culture in the presence of rIL-2. mAb 3.2.3 enhanced the cytolytic activity of NK and A-LAK cells against FcR+ target cells, but not FcR- target cells. However, this effect was not induced by F(ab')2 fragments of 3.2.3. This antibody also induced the release of N-alpha- benzyloxycarbonyl-L-lysine thiobenzy esteresterase by A-LAK cells. These data suggest that the epitope identified by mAb 3.2.3 is on a triggering structure expressed on rat NK cells and A-LAK cells. The expression of the epitope recognized by mAb 3.2.3 on LGL/NK cells and PMN suggests that this structure may be analogous to that identified by the anti-CD16 (-FcR) mAbs. However, the molecule immunoprecipitated by mAb 3.2.3 was a 60-kD dimer composed of two 30-kD chains. These data suggest that mAb 3.2.3 recognizes a unique triggering structure. As mAb 3.2.3 is the first antibody recognizing a determinant with functional significance, selectively expressed on both rat NK cells and A-LAK cells, it will be a useful tool for the study of NK cell ontogeny and function, and the development of cells with LAK activity from the NK cell compartment.

Full Text

The Full Text of this article is available as a PDF (1.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beck B. N., Gillis S., Henney C. S. Display of the neutral glycolipid ganglio-n-tetraosylceramide (asialo GM1) on cells of the natural killer and T lineages. Transplantation. 1982 Feb;33(2):118–122. doi: 10.1097/00007890-198202000-00003. [DOI] [PubMed] [Google Scholar]
  2. Bolhuis R. L., van de Griend R. J. Phytohemagglutinin-induced proliferation and cytolytic activity in T3+ but not in T3- cloned T lymphocytes requires the involvement of the T3 antigen for signal transmission. Cell Immunol. 1985 Jun;93(1):46–57. doi: 10.1016/0008-8749(85)90387-9. [DOI] [PubMed] [Google Scholar]
  3. Chambers W. H., Oeltmann T. N. The effects of hexose 6-O-sulfate esters on human natural killer cell lytic function. J Immunol. 1986 Sep 1;137(5):1469–1474. [PubMed] [Google Scholar]
  4. Damle N. K., Doyle L. V., Bradley E. C. Interleukin 2-activated human killer cells are derived from phenotypically heterogeneous precursors. J Immunol. 1986 Nov 1;137(9):2814–2822. [PubMed] [Google Scholar]
  5. Fleit H. B., Wright S. D., Unkeless J. C. Human neutrophil Fc gamma receptor distribution and structure. Proc Natl Acad Sci U S A. 1982 May;79(10):3275–3279. doi: 10.1073/pnas.79.10.3275. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Flood P. M., Murphy D. B., Horowitz M., LeClair K. P., Smith F. R., Stockert E., Palladino M. A., Jr, DeLeo A. B. A monoclonal antibody that recognizes an Ly-6-linked antigen inhibits the generation of functionally active T cell subsets. J Immunol. 1985 Jul;135(1):63–72. [PubMed] [Google Scholar]
  7. Gray J. D., Torten M., Golub S. H. Generation of natural killer-like cytotoxicity from human thymocytes with interleukin-2. Nat Immun Cell Growth Regul. 1983;3(3):124–133. [PubMed] [Google Scholar]
  8. Grimm E. A., Mazumder A., Zhang H. Z., Rosenberg S. A. Lymphokine-activated killer cell phenomenon. Lysis of natural killer-resistant fresh solid tumor cells by interleukin 2-activated autologous human peripheral blood lymphocytes. J Exp Med. 1982 Jun 1;155(6):1823–1841. doi: 10.1084/jem.155.6.1823. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hercend T., Griffin J. D., Bensussan A., Schmidt R. E., Edson M. A., Brennan A., Murray C., Daley J. F., Schlossman S. F., Ritz J. Generation of monoclonal antibodies to a human natural killer clone. Characterization of two natural killer-associated antigens, NKH1A and NKH2, expressed on subsets of large granular lymphocytes. J Clin Invest. 1985 Mar;75(3):932–943. doi: 10.1172/JCI111794. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hercend T., Reinherz E. L., Meuer S., Schlossman S. F., Ritz J. Phenotypic and functional heterogeneity of human cloned natural killer cell lines. Nature. 1983 Jan 13;301(5896):158–160. doi: 10.1038/301158a0. [DOI] [PubMed] [Google Scholar]
  11. Hiserodt J. C., Britvan L. J., Targan S. R. Characterization of the cytolytic reaction mechanism of the human natural killer (NK) lymphocyte: resolution into binding, programming, and killer cell-independent steps. J Immunol. 1982 Oct;129(4):1782–1787. [PubMed] [Google Scholar]
  12. Hiserodt J. C., Laybourn K. A., Varani J. Expression of a laminin-like substance on the surface of murine natural killer (NK) lymphocytes and its role in NK recognition of tumor target cells. J Immunol. 1985 Aug;135(2):1484–1487. [PubMed] [Google Scholar]
  13. Hiserodt J. C., Laybourn K. A., Varani J. Laminin inhibits the recognition of tumor target cells by murine natural killer (NK) and natural cytotoxic (NC) lymphocytes. Am J Pathol. 1985 Oct;121(1):148–155. [PMC free article] [PubMed] [Google Scholar]
  14. Hiserodt J. C., Vujanovic N. L., Reynolds C. W., Herberman R. B., Cramer D. V. Studies on lymphokine activated killer cells in the rat: analysis of precursor and effector cell phenotype and relationship to natural killer cells. Prog Clin Biol Res. 1987;244:137–146. [PubMed] [Google Scholar]
  15. Itoh K., Tilden A. B., Balch C. M. Lysis of human solid tumor cells by lymphokine-activated natural killer cells. J Immunol. 1986 May 15;136(10):3910–3915. [PubMed] [Google Scholar]
  16. Kasai M., Iwamori M., Nagai Y., Okumura K., Tada T. A glycolipid on the surface of mouse natural killer cells. Eur J Immunol. 1980 Mar;10(3):175–180. doi: 10.1002/eji.1830100304. [DOI] [PubMed] [Google Scholar]
  17. Kedar E., Weiss D. W. The in vitro generation of effector lymphocytes and their employment in tumor immunotherapy. Adv Cancer Res. 1983;38:171–287. doi: 10.1016/s0065-230x(08)60190-6. [DOI] [PubMed] [Google Scholar]
  18. Lanier L. L., Benike C. J., Phillips J. H., Engleman E. G. Recombinant interleukin 2 enhanced natural killer cell-mediated cytotoxicity in human lymphocyte subpopulations expressing the Leu 7 and Leu 11 antigens. J Immunol. 1985 Feb;134(2):794–801. [PubMed] [Google Scholar]
  19. Lanier L. L., Le A. M., Phillips J. H., Warner N. L., Babcock G. F. Subpopulations of human natural killer cells defined by expression of the Leu-7 (HNK-1) and Leu-11 (NK-15) antigens. J Immunol. 1983 Oct;131(4):1789–1796. [PubMed] [Google Scholar]
  20. Leeuwenberg J. F., Spits H., Tax W. J., Capel P. J. Induction of nonspecific cytotoxicity by monoclonal anti-T3 antibodies. J Immunol. 1985 Jun;134(6):3770–3775. [PubMed] [Google Scholar]
  21. Mentzer S. J., Barbosa J. A., Burakoff S. J. T3 monoclonal antibody activation of nonspecific cytolysis: a mechanism of CTL inhibition. J Immunol. 1985 Jul;135(1):34–38. [PubMed] [Google Scholar]
  22. Migliorati G., Herberman R. B., Riccardi C. Low frequency of NK-cell progenitors and development of suppressor cells in IL-2-dependent cultures of spleen cells from low NK-reactive SJL/J mice. Int J Cancer. 1986 Jul 15;38(1):117–125. doi: 10.1002/ijc.2910380119. [DOI] [PubMed] [Google Scholar]
  23. Ortaldo J. R., Mason A., Overton R. Lymphokine-activated killer cells. Analysis of progenitors and effectors. J Exp Med. 1986 Oct 1;164(4):1193–1205. doi: 10.1084/jem.164.4.1193. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Parham P. On the fragmentation of monoclonal IgG1, IgG2a, and IgG2b from BALB/c mice. J Immunol. 1983 Dec;131(6):2895–2902. [PubMed] [Google Scholar]
  25. Perussia B., Acuto O., Terhorst C., Faust J., Lazarus R., Fanning V., Trinchieri G. Human natural killer cells analyzed by B73.1, a monoclonal antibody blocking Fc receptor functions. II. Studies of B73.1 antibody-antigen interaction on the lymphocyte membrane. J Immunol. 1983 May;130(5):2142–2148. [PubMed] [Google Scholar]
  26. Perussia B., Trinchieri G. Antibody 3G8, specific for the human neutrophil Fc receptor, reacts with natural killer cells. J Immunol. 1984 Mar;132(3):1410–1415. [PubMed] [Google Scholar]
  27. Perussia B., Trinchieri G., Jackson A., Warner N. L., Faust J., Rumpold H., Kraft D., Lanier L. L. The Fc receptor for IgG on human natural killer cells: phenotypic, functional, and comparative studies with monoclonal antibodies. J Immunol. 1984 Jul;133(1):180–189. [PubMed] [Google Scholar]
  28. Phillips J. H., Babcock G. F. NKP-15: a monoclonal antibody reactive against purified human natural killer cells and granulocytes. Immunol Lett. 1983 Mar;6(3):143–149. doi: 10.1016/0165-2478(83)90096-2. [DOI] [PubMed] [Google Scholar]
  29. Phillips J. H., Lanier L. L. Dissection of the lymphokine-activated killer phenomenon. Relative contribution of peripheral blood natural killer cells and T lymphocytes to cytolysis. J Exp Med. 1986 Sep 1;164(3):814–825. doi: 10.1084/jem.164.3.814. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Reynolds C. W., Timonen T., Herberman R. B. Natural killer (NK) cell activity in the rat. I. Isolation and characterization of the effector cells. J Immunol. 1981 Jul;127(1):282–287. [PubMed] [Google Scholar]
  31. Riccardi C., Vose B. M., Herberman R. B. Modulation of IL 2-dependent growth of mouse NK cells by interferon and T lymphocytes. J Immunol. 1983 Jan;130(1):228–232. [PubMed] [Google Scholar]
  32. Rosenberg S. A. Adoptive immunotherapy of cancer using lymphokine activated killer cells and recombinant interleukin-2. Important Adv Oncol. 1986:55–91. [PubMed] [Google Scholar]
  33. Rosenberg S. A. Adoptive immunotherapy of cancer: accomplishments and prospects. Cancer Treat Rep. 1984 Jan;68(1):233–255. [PubMed] [Google Scholar]
  34. Salup R. R., Mathieson B. J., Wiltrout R. H. Precursor phenotype of lymphokine-activated killer cells in the mouse. J Immunol. 1987 Jun 1;138(11):3635–3639. [PubMed] [Google Scholar]
  35. Schmidt R. E., Hercend T., Fox D. A., Bensussan A., Bartley G., Daley J. F., Schlossman S. F., Reinherz E. L., Ritz J. The role of interleukin 2 and T11 E rosette antigen in activation and proliferation of human NK clones. J Immunol. 1985 Jul;135(1):672–678. [PubMed] [Google Scholar]
  36. Schmidt R. E., Michon J. M., Woronicz J., Schlossman S. F., Reinherz E. L., Ritz J. Enhancement of natural killer function through activation of the T11 E rosette receptor. J Clin Invest. 1987 Jan;79(1):305–308. doi: 10.1172/JCI112800. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Shau H., Golub S. H. Depletion of NK cells with the lysosomotropic agent L-leucine methyl ester and the in vitro generation of NK activity from NK precursor cells. J Immunol. 1985 Feb;134(2):1136–1141. [PubMed] [Google Scholar]
  38. Spits H., Yssel H., Leeuwenberg J., De Vries J. E. Antigen-specific cytotoxic T cell and antigen-specific proliferating T cell clones can be induced to cytolytic activity by monoclonal antibodies against T3. Eur J Immunol. 1985 Jan;15(1):88–91. doi: 10.1002/eji.1830150117. [DOI] [PubMed] [Google Scholar]
  39. Takayama H., Trenn G., Sitkovsky M. V. A novel cytotoxic T lymphocyte activation assay. Optimized conditions for antigen receptor triggered granule enzyme secretion. J Immunol Methods. 1987 Nov 23;104(1-2):183–190. doi: 10.1016/0022-1759(87)90502-3. [DOI] [PubMed] [Google Scholar]
  40. Toribio M. L., De Landázuri M. O., López-Botet M. Induction of natural killer-like cytotoxicity in cultured human thymocytes. Eur J Immunol. 1983 Dec;13(12):964–969. doi: 10.1002/eji.1830131203. [DOI] [PubMed] [Google Scholar]
  41. Torten M., Sidell N., Golub S. H. Interleukin 2 and stimulator lymphoblastoid cells will induce human thymocytes to bind and kill K562 targets. J Exp Med. 1982 Nov 1;156(5):1545–1550. doi: 10.1084/jem.156.5.1545. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Vujanovic N. L., Herberman R. B., Hiserodt J. C. Lymphokine-activated killer cells in rats: analysis of tissue and strain distribution, ontogeny, and target specificity. Cancer Res. 1988 Feb 15;48(4):878–883. [PubMed] [Google Scholar]
  43. Vujanovic N. L., Herberman R. B., Olszowy M. W., Cramer D. V., Salup R. R., Reynolds C. W., Hiserodt J. C. Lymphokine-activated killer cells in rats: analysis of progenitor and effector cell phenotype and relationship to natural killer cells. Cancer Res. 1988 Feb 15;48(4):884–890. [PubMed] [Google Scholar]
  44. Yang J. C., Mulé J. J., Rosenberg S. A. Murine lymphokine-activated killer (LAK) cells: phenotypic characterization of the precursor and effector cells. J Immunol. 1986 Jul 15;137(2):715–722. [PubMed] [Google Scholar]
  45. Young W. W., Jr, Hakomori S. I., Durdik J. M., Henney C. S. Identification of ganglio-N-tetraosylceramide as a new cell surface marker for murine natural killer (NK) cells. J Immunol. 1980 Jan;124(1):199–201. [PubMed] [Google Scholar]
  46. de la Hera A., Toribio M. L., Marquez C., Martinez C. Interleukin 2 promotes growth and cytolytic activity in human T3+4-8- thymocytes. Proc Natl Acad Sci U S A. 1985 Sep;82(18):6268–6271. doi: 10.1073/pnas.82.18.6268. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. van de Griend R. J., Bolhuis R. L., Stoter G., Roozemond R. C. Regulation of cytolytic activity in CD3- and CD3+ killer cell clones by monoclonal antibodies (anti-CD16, anti-CD2, anti-CD3) depends on subclass specificity of target cell IgG-FcR. J Immunol. 1987 May 15;138(10):3137–3144. [PubMed] [Google Scholar]
  48. van de Griend R. J., Giphart M. J., Van Krimpen B. A., Bolhuis R. L. Human T cell clones exerting multiple cytolytic activities show heterogeneity in susceptibility to inhibition by monoclonal antibodies. J Immunol. 1984 Sep;133(3):1222–1229. [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES