Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1989 Apr 1;169(4):1265–1276. doi: 10.1084/jem.169.4.1265

Cloning of phenotypically different human lymphocytes originating from a single stem cell

PMCID: PMC2189249  PMID: 2784484

Abstract

By using hypoxanthine guanine phosphoribosyltransferase (hprt) gene alterations and chromosome aberrations as in vivo cellular markers, human T, NK, and B cells originating from a single stem cell have been successfully cloned from the peripheral blood of an atomic bomb survivor from Hiroshima. These mutant lymphocytes were selectively cloned, taking advantage of their resistance to a purine analogue, 6- thioguanine. The cloned lymphocytes possessed the same hprt gene alterations and the same chromosome aberration (20q-), but exhibited different surface or functional phenotypes and different rearrangements of TCR or Ig genes. The chromosome aberration patterns strongly suggested that the original stem cell initiated differentiation into each cell type after exposure to atomic bomb radiation. Since the person studied here was exposed to the bomb at 17 yr age, the results suggested that common stem cells exist in adults for at least T, NK, and B cells. The use of hprt gene alterations as specific cellular markers provides a novel method for identifying stem cells in the lymphocyte lineage and for studying lymphocyte differentiation in humans.

Full Text

The Full Text of this article is available as a PDF (1.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abramson S., Miller R. G., Phillips R. A. The identification in adult bone marrow of pluripotent and restricted stem cells of the myeloid and lymphoid systems. J Exp Med. 1977 Jun 1;145(6):1567–1579. doi: 10.1084/jem.145.6.1567. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Albertini R. J., Castle K. L., Borcherding W. R. T-cell cloning to detect the mutant 6-thioguanine-resistant lymphocytes present in human peripheral blood. Proc Natl Acad Sci U S A. 1982 Nov;79(21):6617–6621. doi: 10.1073/pnas.79.21.6617. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Albertini R. J., O'Neill J. P., Nicklas J. A., Heintz N. H., Kelleher P. C. Alterations of the hprt gene in human in vivo-derived 6-thioguanine-resistant T lymphocytes. Nature. 1985 Jul 25;316(6026):369–371. doi: 10.1038/316369a0. [DOI] [PubMed] [Google Scholar]
  4. Allison A. C., Hovi T., Watts R. W., Webster A. D. Immunological observations on patients with Lesch-Nyhan syndrome, and on the role of de-novo purine synthesis in lymphocyte transformation. Lancet. 1975 Dec 13;2(7946):1179–1183. doi: 10.1016/s0140-6736(75)92661-6. [DOI] [PubMed] [Google Scholar]
  5. Awa A. A., Sofuni T., Honda T., Itoh M., Neriishi S., Otake M. Relationship between the radiation dose and chromosome aberrations in atomic bomb survivors of Hiroshima and Nagasaki. J Radiat Res. 1978 Jun;19(2):126–140. doi: 10.1269/jrr.19.126. [DOI] [PubMed] [Google Scholar]
  6. Bradley W. E., Gareau J. L., Seifert A. M., Messing K. Molecular characterization of 15 rearrangements among 90 human in vivo somatic mutants shows that deletions predominate. Mol Cell Biol. 1987 Feb;7(2):956–960. doi: 10.1128/mcb.7.2.956. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Champlin R. E., Golde D. W. Chronic myelogenous leukemia: recent advances. Blood. 1985 May;65(5):1039–1047. [PubMed] [Google Scholar]
  8. Dick J. E., Magli M. C., Huszar D., Phillips R. A., Bernstein A. Introduction of a selectable gene into primitive stem cells capable of long-term reconstitution of the hemopoietic system of W/Wv mice. Cell. 1985 Aug;42(1):71–79. doi: 10.1016/s0092-8674(85)80102-1. [DOI] [PubMed] [Google Scholar]
  9. Fialkow P. J., Faguet G. B., Jacobson R. J., Vaidya K., Murphy S. Evidence that essential thrombocythemia is a clonal disorder with origin in a multipotent stem cell. Blood. 1981 Nov;58(5):916–919. [PubMed] [Google Scholar]
  10. Hakoda M., Akiyama M., Kyoizumi S., Awa A. A., Yamakido M., Otake M. Increased somatic cell mutant frequency in atomic bomb survivors. Mutat Res. 1988 Sep;201(1):39–48. doi: 10.1016/0027-5107(88)90109-1. [DOI] [PubMed] [Google Scholar]
  11. Hakoda M., Akiyama M., Kyoizumi S., Kobuke K., Awa A. A., Yamakido M. Measurement of in vivo HGPRT-deficient mutant cell frequency using a modified method for cloning human peripheral blood T-lymphocytes. Mutat Res. 1988 Jan;197(1):161–169. doi: 10.1016/0027-5107(88)90153-4. [DOI] [PubMed] [Google Scholar]
  12. Herberman R. B., Holden H. T. Natural cell-mediated immunity. Adv Cancer Res. 1978;27:305–377. doi: 10.1016/s0065-230x(08)60936-7. [DOI] [PubMed] [Google Scholar]
  13. Kamada N., Tsuchimoto T., Uchino H. Smaller G chromosomes in the bone-marrow cells of heavily irradiated atomic-bomb survivors. Lancet. 1970 Oct 24;2(7678):880–881. doi: 10.1016/s0140-6736(70)92055-6. [DOI] [PubMed] [Google Scholar]
  14. Kingston R., Jenkinson E. J., Owen J. J. A single stem cell can recolonize an embryonic thymus, producing phenotypically distinct T-cell populations. 1985 Oct 31-Nov 6Nature. 317(6040):811–813. doi: 10.1038/317811a0. [DOI] [PubMed] [Google Scholar]
  15. Morley A. A., Trainor K. J., Seshadri R., Ryall R. G. Measurement of in vivo mutations in human lymphocytes. Nature. 1983 Mar 10;302(5904):155–156. doi: 10.1038/302155a0. [DOI] [PubMed] [Google Scholar]
  16. Nicklas J. A., Hunter T. C., Sullivan L. M., Berman J. K., O'Neill J. P., Albertini R. J. Molecular analyses of in vivo hprt mutations in human T-lymphocytes. I. Studies of low frequency 'spontaneous' mutants by Southern blots. Mutagenesis. 1987 Sep;2(5):341–347. doi: 10.1093/mutage/2.5.341. [DOI] [PubMed] [Google Scholar]
  17. Palacios R., Kiefer M., Brockhaus M., Karjalainen K., Dembić Z., Kisielow P., von Boehmer H. Molecular, cellular, and functional properties of bone marrow T lymphocyte progenitor clones. J Exp Med. 1987 Jul 1;166(1):12–32. doi: 10.1084/jem.166.1.12. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Palacios R., Steinmetz M. Il-3-dependent mouse clones that express B-220 surface antigen, contain Ig genes in germ-line configuration, and generate B lymphocytes in vivo. Cell. 1985 Jul;41(3):727–734. doi: 10.1016/s0092-8674(85)80053-2. [DOI] [PubMed] [Google Scholar]
  19. Patel P. I., Nussbaum R. L., gramson P. E., Ledbetter D. H., Caskey C. T., Chinault A. C. Organization of the HPRT gene and related sequences in the human genome. Somat Cell Mol Genet. 1984 Sep;10(5):483–493. doi: 10.1007/BF01534853. [DOI] [PubMed] [Google Scholar]
  20. Royer H. D., Campen T. J., Ramarli D., Chang H. C., Acuto O., Reinherz E. L. Molecular aspects of human T lymphocyte antigen recognition. Transplantation. 1985 Jun;39(6):571–582. doi: 10.1097/00007890-198506000-00001. [DOI] [PubMed] [Google Scholar]
  21. Takahashi N., Nakai S., Honjo T. Cloning of human immunoglobulin mu gene and comparison with mouse mu gene. Nucleic Acids Res. 1980 Dec 20;8(24):5983–5991. doi: 10.1093/nar/8.24.5983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Thomas Y., Rogozinski L., Chess L. Relationship between human T cell functional heterogeneity and human T cell surface molecules. Immunol Rev. 1983;74:113–128. doi: 10.1111/j.1600-065x.1983.tb01086.x. [DOI] [PubMed] [Google Scholar]
  23. Tonegawa S. Somatic generation of antibody diversity. Nature. 1983 Apr 14;302(5909):575–581. doi: 10.1038/302575a0. [DOI] [PubMed] [Google Scholar]
  24. Toyonaga B., Mak T. W. Genes of the T-cell antigen receptor in normal and malignant T cells. Annu Rev Immunol. 1987;5:585–620. doi: 10.1146/annurev.iy.05.040187.003101. [DOI] [PubMed] [Google Scholar]
  25. Turner D. R., Morley A. A., Haliandros M., Kutlaca R., Sanderson B. J. In vivo somatic mutations in human lymphocytes frequently result from major gene alterations. Nature. 1985 May 23;315(6017):343–345. doi: 10.1038/315343a0. [DOI] [PubMed] [Google Scholar]
  26. Williams C. K., Ogunmola G. B., Abugo O., Ukaejiofo E. O., Esan G. J. Polycythaemia rubra vera associated with unbalanced expression of the X chromosome and monoclonality of T lymphocytes. Acta Haematol. 1983;70(4):229–235. doi: 10.1159/000206733. [DOI] [PubMed] [Google Scholar]
  27. Yanagi Y., Yoshikai Y., Leggett K., Clark S. P., Aleksander I., Mak T. W. A human T cell-specific cDNA clone encodes a protein having extensive homology to immunoglobulin chains. Nature. 1984 Mar 8;308(5955):145–149. doi: 10.1038/308145a0. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES