Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1989 Mar 1;169(3):833–845. doi: 10.1084/jem.169.3.833

Expression of the neutrophil elastase gene during human bone marrow cell differentiation

PMCID: PMC2189275  PMID: 2538548

Abstract

Neutrophil elastase, a potent serine protease carried and released by activated neutrophils, is not synthesized by neutrophils, but by their bone marrow precursor cells. Using in situ hybridization with 35S- labeled antisense and sense neutrophil elastase cRNA probes, the present study demonstrates that expression of the neutrophil elastase gene is tightly controlled in bone marrow precursors and occurs during a very limited stage of differentiation of the neutrophil myeloid series, almost entirely at the promyelocyte stage. Neutrophil elastase mRNA transcript levels are detectable to a limited extent in blasts, increase markedly in the promyelocyte stage, and then disappear as promyelocytes further differentiate. Control probes specific for myeloperoxidase, lactoferrin, and beta-globin mRNA transcripts, respectively, demonstrated contrasting gene expression. Myeloperoxidase mRNA transcripts were also found almost exclusively at the promyelocyte stage, but myeloperoxidase mRNA levels disappeared earlier than do neutrophil elastase mRNA levels, suggesting that expression of these genes may be differently controlled. In comparison, lactoferrin mRNA transcripts were detected late in the neutrophil lineage, while beta- globin mRNA was detected only in cells of the erythroid lineage. Together these observations suggest that the expression of the neutrophil elastase gene is likely under very tight control, and is likely different than that for other constituents of the neutrophil granules.

Full Text

The Full Text of this article is available as a PDF (917.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ackerman G. A., Clark M. A. Ultrastructural localization of peroxidase activity in normal human bone marrow cells. Z Zellforsch Mikrosk Anat. 1971;117(4):463–475. doi: 10.1007/BF00330708. [DOI] [PubMed] [Google Scholar]
  2. Ackerman G. A. The human neutrophilic promyelocyte. A correlated phase and electron microscopic study. Z Zellforsch Mikrosk Anat. 1971 Jul;118(4):467–481. doi: 10.1007/BF00324614. [DOI] [PubMed] [Google Scholar]
  3. Bainton D. F., Ullyot J. L., Farquhar M. G. The development of neutrophilic polymorphonuclear leukocytes in human bone marrow. J Exp Med. 1971 Oct 1;134(4):907–934. doi: 10.1084/jem.134.4.907. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bernaudin J. F., Yamauchi K., Wewers M. D., Tocci M. J., Ferrans V. J., Crystal R. G. Demonstration by in situ hybridization of dissimilar IL-1 beta gene expression in human alveolar macrophages and blood monocytes in response to lipopolysaccharide. J Immunol. 1988 Jun 1;140(11):3822–3829. [PubMed] [Google Scholar]
  5. Brantly M. L., Paul L. D., Miller B. H., Falk R. T., Wu M., Crystal R. G. Clinical features and history of the destructive lung disease associated with alpha-1-antitrypsin deficiency of adults with pulmonary symptoms. Am Rev Respir Dis. 1988 Aug;138(2):327–336. doi: 10.1164/ajrccm/138.2.327. [DOI] [PubMed] [Google Scholar]
  6. Brantly M., Nukiwa T., Crystal R. G. Molecular basis of alpha-1-antitrypsin deficiency. Am J Med. 1988 Jun 24;84(6A):13–31. doi: 10.1016/0002-9343(88)90154-4. [DOI] [PubMed] [Google Scholar]
  7. Breton-Gorius J., Guichard J. Etude au microscope électronique de la localisation des peroxydases dans les cellules DE LA MOELLE OSSEUSE HUMAINE. Nouv Rev Fr Hematol. 1969 Sep-Oct;9(5):678–687. [PubMed] [Google Scholar]
  8. Breul S. D., Bradley K. H., Hance A. J., Schafer M. P., Berg R. A., Crystal R. G. Control of collagen production by human diploid lung fibroblasts. J Biol Chem. 1980 Jun 10;255(11):5250–5260. [PubMed] [Google Scholar]
  9. Bøyum A. Isolation of lymphocytes, granulocytes and macrophages. Scand J Immunol. 1976 Jun;Suppl 5:9–15. [PubMed] [Google Scholar]
  10. Chirgwin J. M., Przybyla A. E., MacDonald R. J., Rutter W. J. Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry. 1979 Nov 27;18(24):5294–5299. doi: 10.1021/bi00591a005. [DOI] [PubMed] [Google Scholar]
  11. Cramer E., Pryzwansky K. B., Villeval J. L., Testa U., Breton-Gorius J. Ultrastructural localization of lactoferrin and myeloperoxidase in human neutrophils by immunogold. Blood. 1985 Feb;65(2):423–432. [PubMed] [Google Scholar]
  12. Glisin V., Crkvenjakov R., Byus C. Ribonucleic acid isolated by cesium chloride centrifugation. Biochemistry. 1974 Jun 4;13(12):2633–2637. doi: 10.1021/bi00709a025. [DOI] [PubMed] [Google Scholar]
  13. Harper M. E., Marselle L. M., Gallo R. C., Wong-Staal F. Detection of lymphocytes expressing human T-lymphotropic virus type III in lymph nodes and peripheral blood from infected individuals by in situ hybridization. Proc Natl Acad Sci U S A. 1986 Feb;83(3):772–776. doi: 10.1073/pnas.83.3.772. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Heck L. W., Darby W. L., Hunter F. A., Bhown A., Miller E. J., Bennett J. C. Isolation, characterization, and amino-terminal amino acid sequence analysis of human neutrophil elastase from normal donors. Anal Biochem. 1985 Aug 15;149(1):153–162. doi: 10.1016/0003-2697(85)90488-9. [DOI] [PubMed] [Google Scholar]
  15. Janoff A. Elastase in tissue injury. Annu Rev Med. 1985;36:207–216. doi: 10.1146/annurev.me.36.020185.001231. [DOI] [PubMed] [Google Scholar]
  16. Janoff A., Scherer J. Mediators of inflammation in leukocyte lysosomes. IX. Elastinolytic activity in granules of human polymorphonuclear leukocytes. J Exp Med. 1968 Nov 1;128(5):1137–1155. doi: 10.1084/jem.128.5.1137. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Johnson K. R., Nauseef W. M., Care A., Wheelock M. J., Shane S., Hudson S., Koeffler H. P., Selsted M., Miller C., Rovera G. Characterization of cDNA clones for human myeloperoxidase: predicted amino acid sequence and evidence for multiple mRNA species. Nucleic Acids Res. 1987 Mar 11;15(5):2013–2028. doi: 10.1093/nar/15.5.2013. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Karlsson S., Nienhuis A. W. Developmental regulation of human globin genes. Annu Rev Biochem. 1985;54:1071–1108. doi: 10.1146/annurev.bi.54.070185.005231. [DOI] [PubMed] [Google Scholar]
  19. Karlsson S., Papayannopoulou T., Schweiger S. G., Stamatoyannopoulos G., Nienhuis A. W. Retroviral-mediated transfer of genomic globin genes leads to regulated production of RNA and protein. Proc Natl Acad Sci U S A. 1987 Apr;84(8):2411–2415. doi: 10.1073/pnas.84.8.2411. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kramps J. A., van der Valk P., van der Sandt M. M., Lindeman J., Meijer C. J. Elastase as a marker for neutrophilic myeloid cells. J Histochem Cytochem. 1984 Apr;32(4):389–394. doi: 10.1177/32.4.6561228. [DOI] [PubMed] [Google Scholar]
  21. MOLONEY W. C., MCPHERSON K., FLIEGELMAN L. Esterase activity in leukocytes demonstrated by the use of naphthol AS-D chloroacetate substrate. J Histochem Cytochem. 1960 May;8:200–207. doi: 10.1177/8.3.200. [DOI] [PubMed] [Google Scholar]
  22. Mason D. Y., Farrell C., Taylor C. R. The detection of intracellular antigens in human leucocytes by immunoperoxidase staining. Br J Haematol. 1975 Nov;31(3):361–370. doi: 10.1111/j.1365-2141.1975.tb00867.x. [DOI] [PubMed] [Google Scholar]
  23. Melton D. A., Krieg P. A., Rebagliati M. R., Maniatis T., Zinn K., Green M. R. Efficient in vitro synthesis of biologically active RNA and RNA hybridization probes from plasmids containing a bacteriophage SP6 promoter. Nucleic Acids Res. 1984 Sep 25;12(18):7035–7056. doi: 10.1093/nar/12.18.7035. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Miyauchi J., Watanabe Y. Immunocytochemical localization of lactoferrin in human neutrophils. An ultrastructural and morphometrical study. Cell Tissue Res. 1987 Feb;247(2):249–258. doi: 10.1007/BF00218306. [DOI] [PubMed] [Google Scholar]
  25. Moench T. R., Gendelman H. E., Clements J. E., Narayan O., Griffin D. E. Efficiency of in situ hybridization as a function of probe size and fixation technique. J Virol Methods. 1985 Jun;11(2):119–130. doi: 10.1016/0166-0934(85)90035-7. [DOI] [PubMed] [Google Scholar]
  26. Ohlsson K., Olsson I., Spitznagel K. Localization of chymotrypsin-like cationic protein, collagenase and elastase in azurophil granules of human neutrophilic polymorphonuclear leukocytes. Hoppe Seylers Z Physiol Chem. 1977 Mar;358(3):361–366. doi: 10.1515/bchm2.1977.358.1.361. [DOI] [PubMed] [Google Scholar]
  27. Pryzwansky K. B., Rausch P. G., Spitznagel J. K., Herion J. C. Immunocytochemical distinction between primary and secondary granule formation in developing human neutrophils: correlations with Romanowsky stains. Blood. 1979 Feb;53(2):179–185. [PubMed] [Google Scholar]
  28. Rado T. A., Wei X. P., Benz E. J., Jr Isolation of lactoferrin cDNA from a human myeloid library and expression of mRNA during normal and leukemic myelopoiesis. Blood. 1987 Oct;70(4):989–993. [PubMed] [Google Scholar]
  29. Rindler-Ludwig R., Schmalzl F., Braunsteiner H. Esterases in human neutrophil granulocytes: evidence for their protease nature. Br J Haematol. 1974 May;27(1):57–64. doi: 10.1111/j.1365-2141.1974.tb06774.x. [DOI] [PubMed] [Google Scholar]
  30. Sinha S., Watorek W., Karr S., Giles J., Bode W., Travis J. Primary structure of human neutrophil elastase. Proc Natl Acad Sci U S A. 1987 Apr;84(8):2228–2232. doi: 10.1073/pnas.84.8.2228. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Spitznagel J. K., Dalldorf F. G., Leffell M. S., Folds J. D., Welsh I. R., Cooney M. H., Martin L. E. Character of azurophil and specific granules purified from human polymorphonuclear leukocytes. Lab Invest. 1974 Jun;30(6):774–785. [PubMed] [Google Scholar]
  32. Takahashi H., Nukiwa T., Basset P., Crystal R. G. Myelomonocytic cell lineage expression of the neutrophil elastase gene. J Biol Chem. 1988 Feb 15;263(5):2543–2547. [PubMed] [Google Scholar]
  33. Takahashi H., Nukiwa T., Yoshimura K., Quick C. D., States D. J., Holmes M. D., Whang-Peng J., Knutsen T., Crystal R. G. Structure of the human neutrophil elastase gene. J Biol Chem. 1988 Oct 15;263(29):14739–14747. [PubMed] [Google Scholar]
  34. Thomas P. S. Hybridization of denatured RNA and small DNA fragments transferred to nitrocellulose. Proc Natl Acad Sci U S A. 1980 Sep;77(9):5201–5205. doi: 10.1073/pnas.77.9.5201. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Travis J., Giles P. J., Porcelli L., Reilly C. F., Baugh R., Powers J. Human leucocyte elastase and cathepsin G: structural and functional characteristics. Ciba Found Symp. 1979;(75):51–68. doi: 10.1002/9780470720585.ch4. [DOI] [PubMed] [Google Scholar]
  36. Weiss S. J., Regiani S. Neutrophils degrade subendothelial matrices in the presence of alpha-1-proteinase inhibitor. Cooperative use of lysosomal proteinases and oxygen metabolites. J Clin Invest. 1984 May;73(5):1297–1303. doi: 10.1172/JCI111332. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Yamada M., Kurahashi K. Regulation of myeloperoxidase gene expression during differentiation of human myeloid leukemia HL-60 cells. J Biol Chem. 1984 Mar 10;259(5):3021–3025. [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES