Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1989 Mar 1;169(3):691–705. doi: 10.1084/jem.169.3.691

Vaccination with the major secretory protein of Legionella pneumophila induces cell-mediated and protective immunity in a guinea pig model of Legionnaires' disease

PMCID: PMC2189286  PMID: 2926324

Abstract

We have examined the capacity of the major secretory protein (MSP) of Legionella pneumophila to induce humoral, cell-mediated, and protective immunity in a guinea pig model of Legionnaires' disease. MSP was purified to homogeneity by ammonium sulfate precipitation, molecular sieve chromatography, and ion-exchange chromatography. The purified MSP was nonlethal and nontoxic to guinea pigs upon subcutaneous administration. Guinea pigs immunized with a sublethal dose of aerosolized L. pneumophila or a subcutaneous dose of MSP developed a strong cell-mediated immune response to MSP. Such guinea pigs exhibited marked splenic lymphocyte proliferation and cutaneous delayed-type hypersensitivity to MSP in comparison with control animals. Guinea pigs immunized with MSP also developed a strong humoral immune response to MSP, as assayed by an ELISA. The median reciprocal antibody titer was 362 (range 45 to greater than 2,048) for immunized animals compared with less than 8 for controls. In contrast, guinea pigs immunized with a sublethal dose of L. pneumophila failed to develop anti-MSP antibody. Guinea pigs immunized with MSP and then challenged with a lethal aerosol dose of L. pneumophila exhibited highly significant protective immunity in each of five consecutive experiments. MSP induced protective immunity in dose-dependent fashion (40 greater than 10 greater than 2.5 greater than 0.6 micrograms MSP); vaccination with two doses of as little as 2.5 micrograms MSP induced significant protective immunity (p = 0.01, Fisher's Exact Test, two-tailed). Altogether, 21 (81%) of 26 animals immunized with 40 micrograms MSP survived challenge compared with 0 (0%) of 26 sham-immunized control animals (p = 7 x 10(- 10), Fisher's Exact Test, two-tailed). MSP-immunized but not control guinea pigs were able to limit L. pneumophila multiplication in their lungs. This study demonstrates that (a) guinea pigs sublethally infected with L. pneumophila develop a strong cell-mediated immune response to MSP; (b) guinea pigs immunized with MSP develop a strong humoral and cell-mediated immune response to MSP; (c) guinea pigs immunized with MSP develop a very high level of protective immunity to lethal aerosol challenge with L. pneumophila; and (d) MSP-immunized animals are able to limit L. pneumophila multiplication in their lungs. MSP, an extracellular protein of an intracellular pathogen, has potential as a vaccine for the prevention of Legionnaires' disease. Secretory molecules of other intracellular pathogens may also have vaccine potential.

Full Text

The Full Text of this article is available as a PDF (989.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baskerville A., Fitzgeorge R. B., Broster M., Hambleton P., Dennis P. J. Experimental transmission of legionnaires' disease by exposure to aerosols of Legionella pneumophila. Lancet. 1981 Dec 19;2(8260-61):1389–1390. doi: 10.1016/s0140-6736(81)92803-8. [DOI] [PubMed] [Google Scholar]
  2. Berche P., Gaillard J. L., Geoffroy C., Alouf J. E. T cell recognition of listeriolysin O is induced during infection with Listeria monocytogenes. J Immunol. 1987 Dec 1;139(11):3813–3821. [PubMed] [Google Scholar]
  3. Berendt R. F., Young H. W., Allen R. G., Knutsen G. L. Dose-response of guinea pigs experimentally infected with aerosols of Legionella pneumophila. J Infect Dis. 1980 Feb;141(2):186–192. doi: 10.1093/infdis/141.2.186. [DOI] [PubMed] [Google Scholar]
  4. Bhardwaj N., Nash T. W., Horwitz M. A. Interferon-gamma-activated human monocytes inhibit the intracellular multiplication of Legionella pneumophila. J Immunol. 1986 Oct 15;137(8):2662–2669. [PubMed] [Google Scholar]
  5. Breiman R. F., Horwitz M. A. Guinea pigs sublethally infected with aerosolized Legionella pneumophila develop humoral and cell-mediated immune responses and are protected against lethal aerosol challenge. A model for studying host defense against lung infections caused by intracellular pathogens. J Exp Med. 1987 Mar 1;165(3):799–811. doi: 10.1084/jem.165.3.799. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Collins F. M., Lamb J. R., Young D. B. Biological activity of protein antigens isolated from Mycobacterium tuberculosis culture filtrate. Infect Immun. 1988 May;56(5):1260–1266. doi: 10.1128/iai.56.5.1260-1266.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Davis G. S., Winn W. C., Jr, Gump D. W., Beaty H. N. The kinetics of early inflammatory events during experimental pneumonia due to Legionella pneumophila in guinea pigs. J Infect Dis. 1983 Nov;148(5):823–835. doi: 10.1093/infdis/148.5.823. [DOI] [PubMed] [Google Scholar]
  8. Davis G. S., Winn W. C., Jr, Gump D. W., Craighead J. E., Beaty H. N. Legionnaires' pneumonia after aerosol exposure in guinea pigs and rats. Am Rev Respir Dis. 1982 Dec;126(6):1050–1057. doi: 10.1164/arrd.1982.126.6.1050. [DOI] [PubMed] [Google Scholar]
  9. Dreyfus L. A., Iglewski B. H. Purification and characterization of an extracellular protease of Legionella pneumophila. Infect Immun. 1986 Mar;51(3):736–743. doi: 10.1128/iai.51.3.736-743.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. GELL P. G., BENACERRAF B. Studies on hypersensitivity. II. Delayed hypersensitivity to denatured proteins in guinea pigs. Immunology. 1959 Jan;2(1):64–70. [PMC free article] [PubMed] [Google Scholar]
  11. Horwitz M. A. Cell-mediated immunity in Legionnaires' disease. J Clin Invest. 1983 Jun;71(6):1686–1697. doi: 10.1172/JCI110923. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Horwitz M. A. Characterization of avirulent mutant Legionella pneumophila that survive but do not multiply within human monocytes. J Exp Med. 1987 Nov 1;166(5):1310–1328. doi: 10.1084/jem.166.5.1310. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Horwitz M. A., Silverstein S. C. Activated human monocytes inhibit the intracellular multiplication of Legionnaires' disease bacteria. J Exp Med. 1981 Nov 1;154(5):1618–1635. doi: 10.1084/jem.154.5.1618. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Horwitz M. A., Silverstein S. C. Interaction of the Legionnaires' disease bacterium (Legionella pneumophila) with human phagocytes. I. L. pneumophila resists killing by polymorphonuclear leukocytes, antibody, and complement. J Exp Med. 1981 Feb 1;153(2):386–397. doi: 10.1084/jem.153.2.386. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Horwitz M. A., Silverstein S. C. Interaction of the legionnaires' disease bacterium (Legionella pneumophila) with human phagocytes. II. Antibody promotes binding of L. pneumophila to monocytes but does not inhibit intracellular multiplication. J Exp Med. 1981 Feb 1;153(2):398–406. doi: 10.1084/jem.153.2.398. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Horwitz M. A., Silverstein S. C. Legionnaires' disease bacterium (Legionella pneumophila) multiples intracellularly in human monocytes. J Clin Invest. 1980 Sep;66(3):441–450. doi: 10.1172/JCI109874. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Ishizaka K., Kishimoto T., Delespesse G., King T. P. Immunogenic properties of modified antigen E. I. Presence of specific determinants for T cells in denatured antigen and polypeptide chains. J Immunol. 1974 Jul;113(1):70–77. [PubMed] [Google Scholar]
  18. Katz S. M., Hashemi S. Electron microscopic examination of the inflammatory response to Legionella pneumophila in guinea pigs. Lab Invest. 1982 Jan;46(1):24–32. [PubMed] [Google Scholar]
  19. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  20. Merril C. R., Goldman D., Sedman S. A., Ebert M. H. Ultrasensitive stain for proteins in polyacrylamide gels shows regional variation in cerebrospinal fluid proteins. Science. 1981 Mar 27;211(4489):1437–1438. doi: 10.1126/science.6162199. [DOI] [PubMed] [Google Scholar]
  21. Nash T. W., Libby D. M., Horwitz M. A. Interaction between the legionnaires' disease bacterium (Legionella pneumophila) and human alveolar macrophages. Influence of antibody, lymphokines, and hydrocortisone. J Clin Invest. 1984 Sep;74(3):771–782. doi: 10.1172/JCI111493. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Schirrmacher V., Wigzell H. Immune responses against native and chemically modified albumins in mice. I. Analysis of non-thymus-processed (B) and thymus-processed (T) cell responses against methylated bovine serum albumin. J Exp Med. 1972 Dec 1;136(6):1616–1630. doi: 10.1084/jem.136.6.1616. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Wilkinson H. W., Reingold A. L., Brake B. J., McGiboney D. L., Gorman G. W., Broome C. V. Reactivity of serum from patients with suspected legionellosis against 29 antigens of legionellaceae and Legionella-like organisms by indirect immunofluorescence assay. J Infect Dis. 1983 Jan;147(1):23–31. doi: 10.1093/infdis/147.1.23. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES