Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1989 Mar 1;169(3):1059–1070. doi: 10.1084/jem.169.3.1059

Isolation and characterization of a B lymphocyte mutant with altered signal transduction through its antigen receptor

PMCID: PMC2189292  PMID: 2494290

Abstract

A receptor surface Ig (sIg) signaling variant of WEHI-231 was constructed to investigate components and linkages between various signaling events associated with signal transduction through sIg. Unlike the wildtype, crosslinking of sIgM on VS2.12-cl.2 did not result in downregulation of proliferation. Similarly, receptor crosslinking was uncoupled from inositol phospholipid (PI) hydrolysis and upregulation of c-fos expression in the variant. The signaling defect in VS2.12-cl.2 appears to be proximal to phospholipase C activation as direct G protein activation by A1F4- triggers PI hydrolysis and bypassing PI hydrolysis using phorbol diester stimulation of protein kinase C restores the inhibitable phenotype and the ability to upregulate c-fos. Even more interesting, sIg-linked Ca2+ responses by VS2.12-cl.2 are equivalent to these observed in the wildtype WEHI-231. These latter results suggest that contrary to current thought, sIg- generated signals may not be coupled to Ca2+ fluxes entirely via inositol phospholipid hydrolysis. Thus, VS2.12-cl.2 is a new and powerful tool with which to analyze signaling through sIg at the molecular level.

Full Text

The Full Text of this article is available as a PDF (776.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bijsterbosch M. K., Meade C. J., Turner G. A., Klaus G. G. B lymphocyte receptors and polyphosphoinositide degradation. Cell. 1985 Jul;41(3):999–1006. doi: 10.1016/s0092-8674(85)80080-5. [DOI] [PubMed] [Google Scholar]
  2. Boyd A. W., Schrader J. W. The regulation of growth and differentiation of a murine B cell lymphoma. II. The inhibition of WEHI 231 by anti-immunoglobulin antibodies. J Immunol. 1981 Jun;126(6):2466–2469. [PubMed] [Google Scholar]
  3. Cambier J. C., Ransom J. T. Molecular mechanisms of transmembrane signaling in B lymphocytes. Annu Rev Immunol. 1987;5:175–199. doi: 10.1146/annurev.iy.05.040187.001135. [DOI] [PubMed] [Google Scholar]
  4. Chirgwin J. M., Przybyla A. E., MacDonald R. J., Rutter W. J. Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry. 1979 Nov 27;18(24):5294–5299. doi: 10.1021/bi00591a005. [DOI] [PubMed] [Google Scholar]
  5. Coggeshall K. M., Cambier J. C. B cell activation. VIII. Membrane immunoglobulins transduce signals via activation of phosphatidylinositol hydrolysis. J Immunol. 1984 Dec;133(6):3382–3386. [PubMed] [Google Scholar]
  6. Curran T., Peters G., Van Beveren C., Teich N. M., Verma I. M. FBJ murine osteosarcoma virus: identification and molecular cloning of biologically active proviral DNA. J Virol. 1982 Nov;44(2):674–682. doi: 10.1128/jvi.44.2.674-682.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gold M. R., DeFranco A. L. Phorbol esters and dioctanoylglycerol block anti-IgM-stimulated phosphoinositide hydrolysis in the murine B cell lymphoma WEHI-231. J Immunol. 1987 Feb 1;138(3):868–876. [PubMed] [Google Scholar]
  8. Gold M. R., Jakway J. P., DeFranco A. L. Involvement of a guanine-nucleotide-binding component in membrane IgM-stimulated phosphoinositide breakdown. J Immunol. 1987 Dec 1;139(11):3604–3613. [PubMed] [Google Scholar]
  9. Grynkiewicz G., Poenie M., Tsien R. Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem. 1985 Mar 25;260(6):3440–3450. [PubMed] [Google Scholar]
  10. Harnett M. M., Klaus G. G. G protein coupling of antigen receptor-stimulated polyphosphoinositide hydrolysis in B cells. J Immunol. 1988 May 1;140(9):3135–3139. [PubMed] [Google Scholar]
  11. Hornbeck P., Paul W. E. Anti-immunoglobulin and phorbol ester induce phosphorylation of proteins associated with the plasma membrane and cytoskeleton in murine B lymphocytes. J Biol Chem. 1986 Nov 5;261(31):14817–14824. [PubMed] [Google Scholar]
  12. Klaus G. G., Bijsterbosch M. K., O'Garra A., Harnett M. M., Rigley K. P. Receptor signalling and crosstalk in B lymphocytes. Immunol Rev. 1987 Oct;99:19–38. doi: 10.1111/j.1600-065x.1987.tb01170.x. [DOI] [PubMed] [Google Scholar]
  13. LaBaer J., Tsien R. Y., Fahey K. A., DeFranco A. L. Stimulation of the antigen receptor on WEHI-231 B lymphoma cells results in a voltage-independent increase in cytoplasmic calcium. J Immunol. 1986 Sep 15;137(6):1836–1844. [PubMed] [Google Scholar]
  14. MacDougall S. L., Grinstein S., Gelfand E. W. Detection of ligand-activated conductive Ca2+ channels in human B lymphocytes. Cell. 1988 Jul 15;54(2):229–234. doi: 10.1016/0092-8674(88)90555-7. [DOI] [PubMed] [Google Scholar]
  15. McCormack J. E., Pepe V. H., Kent R. B., Dean M., Marshak-Rothstein A., Sonenshein G. E. Specific regulation of c-myc oncogene expression in a murine B-cell lymphoma. Proc Natl Acad Sci U S A. 1984 Sep;81(17):5546–5550. doi: 10.1073/pnas.81.17.5546. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Mizuguchi J., Tsang W., Morrison S. L., Beaven M. A., Paul W. E. Membrane IgM, IgD, and IgG act as signal transmission molecules in a series of B lymphomas. J Immunol. 1986 Oct 1;137(7):2162–2167. [PubMed] [Google Scholar]
  17. Monroe J. G., Kass M. J. Molecular events in B cell activation. I. Signals required to stimulate G0 to G1 transition of resting B lymphocytes. J Immunol. 1985 Sep;135(3):1674–1682. [PubMed] [Google Scholar]
  18. Monroe J. G., Niedel J. E., Cambier J. C. B cell activation. IV. Induction of cell membrane depolarization and hyper-I-A expression by phorbol diesters suggests a role for protein kinase C in murine B lymphocyte activation. J Immunol. 1984 Mar;132(3):1472–1478. [PubMed] [Google Scholar]
  19. Monroe J. G. Up-regulation of c-fos expression is a component of the mIg signal transduction mechanism but is not indicative of competence for proliferation. J Immunol. 1988 Mar 1;140(5):1454–1460. [PubMed] [Google Scholar]
  20. Myers C. D., Kriz M. K., Sullivan T. J., Vitetta E. S. Antigen-induced changes in phospholipid metabolism in antigen-binding B lymphocytes. J Immunol. 1987 Mar 15;138(6):1705–1711. [PubMed] [Google Scholar]
  21. Ransom J. T., Chen M., Sandoval V. M., Pasternak J. A., Digiusto D., Cambier J. C. Increased plasma membrane permeability to Ca2+ in anti-Ig-stimulated B lymphocytes is dependent on activation of phosphoinositide hydrolysis. J Immunol. 1988 May 1;140(9):3150–3155. [PubMed] [Google Scholar]
  22. Ransom J. T., DiGiusto D. L., Cambier J. C. Single cell analysis of calcium mobilization in anti-immunoglobulin-stimulated B lymphocytes. J Immunol. 1986 Jan;136(1):54–57. [PubMed] [Google Scholar]
  23. Ransom J. T., Harris L. K., Cambier J. C. Anti-Ig induces release of inositol 1,4,5-trisphosphate, which mediates mobilization of intracellular Ca++ stores in B lymphocytes. J Immunol. 1986 Jul 15;137(2):708–714. [PubMed] [Google Scholar]
  24. Scott D. W., Livnat D., Pennell C. A., Keng P. Lymphoma models for B cell activation and tolerance. III. Cell cycle dependence for negative signalling of WEHI-231 B lymphoma cells by anti-mu. J Exp Med. 1986 Jul 1;164(1):156–164. doi: 10.1084/jem.164.1.156. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Snow E. C., Fetherston J. D., Zimmer S. Induction of the c-myc protooncogene after antigen binding to hapten-specific B cells. J Exp Med. 1986 Sep 1;164(3):944–949. doi: 10.1084/jem.164.3.944. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Sternweis P. C., Gilman A. G. Aluminum: a requirement for activation of the regulatory component of adenylate cyclase by fluoride. Proc Natl Acad Sci U S A. 1982 Aug;79(16):4888–4891. doi: 10.1073/pnas.79.16.4888. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Woldemussie E., Ali H., Takaishi T., Siraganian R. P., Beaven M. A. Identification of variants of the basophilic leukemia (RBL-2H3) cells that have defective phosphoinositide responses to antigen and stimulants of guanosine 5'-triphosphate-regulatory proteins. J Immunol. 1987 Oct 1;139(7):2431–2438. [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES