Abstract
A receptor surface Ig (sIg) signaling variant of WEHI-231 was constructed to investigate components and linkages between various signaling events associated with signal transduction through sIg. Unlike the wildtype, crosslinking of sIgM on VS2.12-cl.2 did not result in downregulation of proliferation. Similarly, receptor crosslinking was uncoupled from inositol phospholipid (PI) hydrolysis and upregulation of c-fos expression in the variant. The signaling defect in VS2.12-cl.2 appears to be proximal to phospholipase C activation as direct G protein activation by A1F4- triggers PI hydrolysis and bypassing PI hydrolysis using phorbol diester stimulation of protein kinase C restores the inhibitable phenotype and the ability to upregulate c-fos. Even more interesting, sIg-linked Ca2+ responses by VS2.12-cl.2 are equivalent to these observed in the wildtype WEHI-231. These latter results suggest that contrary to current thought, sIg- generated signals may not be coupled to Ca2+ fluxes entirely via inositol phospholipid hydrolysis. Thus, VS2.12-cl.2 is a new and powerful tool with which to analyze signaling through sIg at the molecular level.
Full Text
The Full Text of this article is available as a PDF (776.7 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bijsterbosch M. K., Meade C. J., Turner G. A., Klaus G. G. B lymphocyte receptors and polyphosphoinositide degradation. Cell. 1985 Jul;41(3):999–1006. doi: 10.1016/s0092-8674(85)80080-5. [DOI] [PubMed] [Google Scholar]
- Boyd A. W., Schrader J. W. The regulation of growth and differentiation of a murine B cell lymphoma. II. The inhibition of WEHI 231 by anti-immunoglobulin antibodies. J Immunol. 1981 Jun;126(6):2466–2469. [PubMed] [Google Scholar]
- Cambier J. C., Ransom J. T. Molecular mechanisms of transmembrane signaling in B lymphocytes. Annu Rev Immunol. 1987;5:175–199. doi: 10.1146/annurev.iy.05.040187.001135. [DOI] [PubMed] [Google Scholar]
- Chirgwin J. M., Przybyla A. E., MacDonald R. J., Rutter W. J. Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry. 1979 Nov 27;18(24):5294–5299. doi: 10.1021/bi00591a005. [DOI] [PubMed] [Google Scholar]
- Coggeshall K. M., Cambier J. C. B cell activation. VIII. Membrane immunoglobulins transduce signals via activation of phosphatidylinositol hydrolysis. J Immunol. 1984 Dec;133(6):3382–3386. [PubMed] [Google Scholar]
- Curran T., Peters G., Van Beveren C., Teich N. M., Verma I. M. FBJ murine osteosarcoma virus: identification and molecular cloning of biologically active proviral DNA. J Virol. 1982 Nov;44(2):674–682. doi: 10.1128/jvi.44.2.674-682.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gold M. R., DeFranco A. L. Phorbol esters and dioctanoylglycerol block anti-IgM-stimulated phosphoinositide hydrolysis in the murine B cell lymphoma WEHI-231. J Immunol. 1987 Feb 1;138(3):868–876. [PubMed] [Google Scholar]
- Gold M. R., Jakway J. P., DeFranco A. L. Involvement of a guanine-nucleotide-binding component in membrane IgM-stimulated phosphoinositide breakdown. J Immunol. 1987 Dec 1;139(11):3604–3613. [PubMed] [Google Scholar]
- Grynkiewicz G., Poenie M., Tsien R. Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem. 1985 Mar 25;260(6):3440–3450. [PubMed] [Google Scholar]
- Harnett M. M., Klaus G. G. G protein coupling of antigen receptor-stimulated polyphosphoinositide hydrolysis in B cells. J Immunol. 1988 May 1;140(9):3135–3139. [PubMed] [Google Scholar]
- Hornbeck P., Paul W. E. Anti-immunoglobulin and phorbol ester induce phosphorylation of proteins associated with the plasma membrane and cytoskeleton in murine B lymphocytes. J Biol Chem. 1986 Nov 5;261(31):14817–14824. [PubMed] [Google Scholar]
- Klaus G. G., Bijsterbosch M. K., O'Garra A., Harnett M. M., Rigley K. P. Receptor signalling and crosstalk in B lymphocytes. Immunol Rev. 1987 Oct;99:19–38. doi: 10.1111/j.1600-065x.1987.tb01170.x. [DOI] [PubMed] [Google Scholar]
- LaBaer J., Tsien R. Y., Fahey K. A., DeFranco A. L. Stimulation of the antigen receptor on WEHI-231 B lymphoma cells results in a voltage-independent increase in cytoplasmic calcium. J Immunol. 1986 Sep 15;137(6):1836–1844. [PubMed] [Google Scholar]
- MacDougall S. L., Grinstein S., Gelfand E. W. Detection of ligand-activated conductive Ca2+ channels in human B lymphocytes. Cell. 1988 Jul 15;54(2):229–234. doi: 10.1016/0092-8674(88)90555-7. [DOI] [PubMed] [Google Scholar]
- McCormack J. E., Pepe V. H., Kent R. B., Dean M., Marshak-Rothstein A., Sonenshein G. E. Specific regulation of c-myc oncogene expression in a murine B-cell lymphoma. Proc Natl Acad Sci U S A. 1984 Sep;81(17):5546–5550. doi: 10.1073/pnas.81.17.5546. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mizuguchi J., Tsang W., Morrison S. L., Beaven M. A., Paul W. E. Membrane IgM, IgD, and IgG act as signal transmission molecules in a series of B lymphomas. J Immunol. 1986 Oct 1;137(7):2162–2167. [PubMed] [Google Scholar]
- Monroe J. G., Kass M. J. Molecular events in B cell activation. I. Signals required to stimulate G0 to G1 transition of resting B lymphocytes. J Immunol. 1985 Sep;135(3):1674–1682. [PubMed] [Google Scholar]
- Monroe J. G., Niedel J. E., Cambier J. C. B cell activation. IV. Induction of cell membrane depolarization and hyper-I-A expression by phorbol diesters suggests a role for protein kinase C in murine B lymphocyte activation. J Immunol. 1984 Mar;132(3):1472–1478. [PubMed] [Google Scholar]
- Monroe J. G. Up-regulation of c-fos expression is a component of the mIg signal transduction mechanism but is not indicative of competence for proliferation. J Immunol. 1988 Mar 1;140(5):1454–1460. [PubMed] [Google Scholar]
- Myers C. D., Kriz M. K., Sullivan T. J., Vitetta E. S. Antigen-induced changes in phospholipid metabolism in antigen-binding B lymphocytes. J Immunol. 1987 Mar 15;138(6):1705–1711. [PubMed] [Google Scholar]
- Ransom J. T., Chen M., Sandoval V. M., Pasternak J. A., Digiusto D., Cambier J. C. Increased plasma membrane permeability to Ca2+ in anti-Ig-stimulated B lymphocytes is dependent on activation of phosphoinositide hydrolysis. J Immunol. 1988 May 1;140(9):3150–3155. [PubMed] [Google Scholar]
- Ransom J. T., DiGiusto D. L., Cambier J. C. Single cell analysis of calcium mobilization in anti-immunoglobulin-stimulated B lymphocytes. J Immunol. 1986 Jan;136(1):54–57. [PubMed] [Google Scholar]
- Ransom J. T., Harris L. K., Cambier J. C. Anti-Ig induces release of inositol 1,4,5-trisphosphate, which mediates mobilization of intracellular Ca++ stores in B lymphocytes. J Immunol. 1986 Jul 15;137(2):708–714. [PubMed] [Google Scholar]
- Scott D. W., Livnat D., Pennell C. A., Keng P. Lymphoma models for B cell activation and tolerance. III. Cell cycle dependence for negative signalling of WEHI-231 B lymphoma cells by anti-mu. J Exp Med. 1986 Jul 1;164(1):156–164. doi: 10.1084/jem.164.1.156. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Snow E. C., Fetherston J. D., Zimmer S. Induction of the c-myc protooncogene after antigen binding to hapten-specific B cells. J Exp Med. 1986 Sep 1;164(3):944–949. doi: 10.1084/jem.164.3.944. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sternweis P. C., Gilman A. G. Aluminum: a requirement for activation of the regulatory component of adenylate cyclase by fluoride. Proc Natl Acad Sci U S A. 1982 Aug;79(16):4888–4891. doi: 10.1073/pnas.79.16.4888. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Woldemussie E., Ali H., Takaishi T., Siraganian R. P., Beaven M. A. Identification of variants of the basophilic leukemia (RBL-2H3) cells that have defective phosphoinositide responses to antigen and stimulants of guanosine 5'-triphosphate-regulatory proteins. J Immunol. 1987 Oct 1;139(7):2431–2438. [PubMed] [Google Scholar]
