Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1989 Mar 1;169(3):1087–1099. doi: 10.1084/jem.169.3.1087

Blast-1 possesses a glycosyl-phosphatidylinositol (GPI) membrane anchor, is related to LFA-3 and OX-45, and maps to chromosome 1q21-23

PMCID: PMC2189294  PMID: 2466936

Abstract

Blast-1 is a human activation-associated glycoprotein expressed on the surface of leukocytes. Analysis of a translated sequence from a Blast-1 cDNA reveals a single hydrophobic sequence which could traverse the plasma membrane, but is devoid of charged residues that might represent a cytoplasmic tail. Consistent with this characteristic, Blast-1 is demonstrated here to be anchored to the cell surface through a glycosyl- phosphatidylinositol (GPI)-containing lipid. Comparison of Blast-1 to other GPI-anchored membrane proteins revealed a striking primary and secondary structure similarity with MRC OX45 and the lymphocyte function antigen LFA-3. The degree of overall amino acid sequence homology reveals that OX45 is a rat homologue of Blast-1. The greatest homology to LFA-3 occurs between their NH2-terminal Ig-like domains. Evidence is presented that demonstrates that Blast-1 and LFA-3 possess a disulfide-bonded second domain. These common characteristics demonstrate a structural and evolutionary relationship between Blast-1, OX45, LFA-3, and CD2, which in turn suggests a functional role for Blast-1 in cell-cell interactions in the immune response. The gene for Blast-1 has been localized to chromosome 1 q21-q23, indistinguishable from the CD1 cluster of Ig superfamily genes, raising the possibility that they may be linked.

Full Text

The Full Text of this article is available as a PDF (871.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Albertson D. G., Fishpool R., Sherrington P., Nacheva E., Milstein C. Sensitive and high resolution in situ hybridization to human chromosomes using biotin labelled probes: assignment of the human thymocyte CD1 antigen genes to chromosome 1. EMBO J. 1988 Sep;7(9):2801–2805. doi: 10.1002/j.1460-2075.1988.tb03135.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Arvieux J., Jefferies W. A., Paterson D. J., Williams A. F., Green J. R. Monoclonal antibodies against a rat leucocyte antigen block antigen-induced T-cell responses via an effect on accessory cells. Immunology. 1986 Jul;58(3):337–342. [PMC free article] [PubMed] [Google Scholar]
  3. Arvieux J., Willis A. C., Williams A. F. MRC OX-45 antigen: a leucocyte/endothelium rat membrane glycoprotein of 45,000 molecular weight. Mol Immunol. 1986 Sep;23(9):983–990. doi: 10.1016/0161-5890(86)90129-x. [DOI] [PubMed] [Google Scholar]
  4. Barton D. E., Yang-Feng T. L., Francke U. The human tyrosine aminotransferase gene mapped to the long arm of chromosome 16 (region 16q22----q24) by somatic cell hybrid analysis and in situ hybridization. Hum Genet. 1986 Mar;72(3):221–224. doi: 10.1007/BF00291881. [DOI] [PubMed] [Google Scholar]
  5. Bierer B. E., Peterson A., Barbosa J., Seed B., Burakoff S. J. Expression of the T-cell surface molecule CD2 and an epitope-loss CD2 mutant to define the role of lymphocyte function-associated antigen 3 (LFA-3) in T-cell activation. Proc Natl Acad Sci U S A. 1988 Feb;85(4):1194–1198. doi: 10.1073/pnas.85.4.1194. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chou P. Y., Fasman G. D. Empirical predictions of protein conformation. Annu Rev Biochem. 1978;47:251–276. doi: 10.1146/annurev.bi.47.070178.001343. [DOI] [PubMed] [Google Scholar]
  7. Dustin M. L., Sanders M. E., Shaw S., Springer T. A. Purified lymphocyte function-associated antigen 3 binds to CD2 and mediates T lymphocyte adhesion. J Exp Med. 1987 Mar 1;165(3):677–692. doi: 10.1084/jem.165.3.677. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Ferguson M. A., Williams A. F. Cell-surface anchoring of proteins via glycosyl-phosphatidylinositol structures. Annu Rev Biochem. 1988;57:285–320. doi: 10.1146/annurev.bi.57.070188.001441. [DOI] [PubMed] [Google Scholar]
  9. Francke U. Regional localization of the human genes for malate dehydrogenase-1 and isocitrate dehydrogenase-1 on chromosome 2 by interspecific hybridization using human cells with the balanced reciprocal translocation t(1;2) (q32;q13). Cytogenet Cell Genet. 1975;14(3-6):308–312. doi: 10.1159/000130370. [DOI] [PubMed] [Google Scholar]
  10. Gunter K. C., Malek T. R., Shevach E. M. T cell-activating properties of an anti-Thy-1 monoclonal antibody. Possible analogy to OKT3/Leu-4. J Exp Med. 1984 Mar 1;159(3):716–730. doi: 10.1084/jem.159.3.716. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Ishihara A., Hou Y., Jacobson K. The Thy-1 antigen exhibits rapid lateral diffusion in the plasma membrane of rodent lymphoid cells and fibroblasts. Proc Natl Acad Sci U S A. 1987 Mar;84(5):1290–1293. doi: 10.1073/pnas.84.5.1290. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kintner C., Sugden B. Identification of antigenic determinants unique to the surfaces of cells transformed by Epstein-Barr virus. Nature. 1981 Dec 3;294(5840):458–460. doi: 10.1038/294458a0. [DOI] [PubMed] [Google Scholar]
  13. Kyte J., Doolittle R. F. A simple method for displaying the hydropathic character of a protein. J Mol Biol. 1982 May 5;157(1):105–132. doi: 10.1016/0022-2836(82)90515-0. [DOI] [PubMed] [Google Scholar]
  14. Lawrence J. B., Villnave C. A., Singer R. H. Sensitive, high-resolution chromatin and chromosome mapping in situ: presence and orientation of two closely integrated copies of EBV in a lymphoma line. Cell. 1988 Jan 15;52(1):51–61. doi: 10.1016/0092-8674(88)90530-2. [DOI] [PubMed] [Google Scholar]
  15. Low M. G., Saltiel A. R. Structural and functional roles of glycosyl-phosphatidylinositol in membranes. Science. 1988 Jan 15;239(4837):268–275. doi: 10.1126/science.3276003. [DOI] [PubMed] [Google Scholar]
  16. Rock K. L., Yeh E. T., Gramm C. F., Haber S. I., Reiser H., Benacerraf B. TAP, a novel T cell-activating protein involved in the stimulation of MHC-restricted T lymphocytes. J Exp Med. 1986 Feb 1;163(2):315–333. doi: 10.1084/jem.163.2.315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Seed B. An LFA-3 cDNA encodes a phospholipid-linked membrane protein homologous to its receptor CD2. 1987 Oct 29-Nov 4Nature. 329(6142):840–842. doi: 10.1038/329840a0. [DOI] [PubMed] [Google Scholar]
  18. Staunton D. E., Thorley-Lawson D. A. Molecular cloning of the lymphocyte activation marker Blast-1. EMBO J. 1987 Dec 1;6(12):3695–3701. doi: 10.1002/j.1460-2075.1987.tb02703.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Thiery J. P., Brackenbury R., Rutishauser U., Edelman G. M. Adhesion among neural cells of the chick embryo. II. Purification and characterization of a cell adhesion molecule from neural retina. J Biol Chem. 1977 Oct 10;252(19):6841–6845. [PubMed] [Google Scholar]
  20. Thorley-Lawson D. A., Schooley R. T., Bhan A. K., Nadler L. M. Epstein-Barr virus superinduces a new human B cell differentiation antigen (B-LAST 1) expressed on transformed lymphoblasts. Cell. 1982 Sep;30(2):415–425. doi: 10.1016/0092-8674(82)90239-2. [DOI] [PubMed] [Google Scholar]
  21. Williams A. F., Barclay A. N. The immunoglobulin superfamily--domains for cell surface recognition. Annu Rev Immunol. 1988;6:381–405. doi: 10.1146/annurev.iy.06.040188.002121. [DOI] [PubMed] [Google Scholar]
  22. Yeh E. T., Reiser H., Bamezai A., Rock K. L. TAP transcription and phosphatidylinositol linkage mutants are defective in activation through the T cell receptor. Cell. 1988 Mar 11;52(5):665–674. doi: 10.1016/0092-8674(88)90404-7. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES