Abstract
The staphylococcinlike peptide Pep 5 rapidly abolished the membrane potential of bacterial cells; active transport of amino acids by cytoplasmic membrane vesicles was inhibited and preaccumulated amino acids were released upon the addition of Pep 5. Artificial asolectin vesicles were not impaired by the peptide. It is concluded that the cytoplasmic membrane is the primary target of Pep 5.
Full text
PDF



Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bhakoo M., Birkbeck T. H., Freer J. H. Interaction of Staphylococcus aureus delta-lysin with phospholipid monolayers. Biochemistry. 1982 Dec 21;21(26):6879–6883. doi: 10.1021/bi00269a039. [DOI] [PubMed] [Google Scholar]
- Davidson V. L., Cramer W. A., Bishop L. J., Brunden K. R. Dependence of the activity of colicin E1 in artificial membrane vesicles on pH, membrane potential, and vesicle size. J Biol Chem. 1984 Jan 10;259(1):594–600. [PubMed] [Google Scholar]
- Ersfeld-Dressen H., Sahl H. G., Brandis H. Plasmid involvement in production of and immunity to the staphylococcin-like peptide Pep 5. J Gen Microbiol. 1984 Nov;130(11):3029–3035. doi: 10.1099/00221287-130-11-3029. [DOI] [PubMed] [Google Scholar]
- Harris E. J., van Dam K. Changes of total water and sucrose space accompanying induced ion uptake or phosphate swelling of rat liver mitochondria. Biochem J. 1968 Feb;106(3):759–766. doi: 10.1042/bj1060759. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kempf C., Klausner R. D., Weinstein J. N., Van Renswoude J., Pincus M., Blumenthal R. Voltage-dependent trans-bilayer orientation of melittin. J Biol Chem. 1982 Mar 10;257(5):2469–2476. [PubMed] [Google Scholar]
- Konings W. N., Bisschop A., Veenhuis M., Vermeulen C. A. New procedure for the isolation of membrane vesicles of Bacillus subtilis and an electron microscopy study of their ultrastructure. J Bacteriol. 1973 Dec;116(3):1456–1465. doi: 10.1128/jb.116.3.1456-1465.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Konisky J. Colicins and other bacteriocins with established modes of action. Annu Rev Microbiol. 1982;36:125–144. doi: 10.1146/annurev.mi.36.100182.001013. [DOI] [PubMed] [Google Scholar]
- Sahl H. G., Brandis H. Mode of action of the staphylococcin-like peptide Pep 5 and culture conditions effecting its activity. Zentralbl Bakteriol Mikrobiol Hyg A. 1982 Jun;252(2):166–175. [PubMed] [Google Scholar]
- Sahl H. G., Brandis H. Production, purification and chemical properties of an antistaphylococcal agent produced by Staphylococcus epidermidis. J Gen Microbiol. 1981 Dec;127(2):377–384. doi: 10.1099/00221287-127-2-377. [DOI] [PubMed] [Google Scholar]
- Weerkamp A., Geerts W., Vogels G. D. Energy requirements for the action of staphylococcin 1580 in Staphyloccus aureus. Biochim Biophys Acta. 1978 Mar 20;539(3):372–385. doi: 10.1016/0304-4165(78)90041-7. [DOI] [PubMed] [Google Scholar]
- Weerkamp A., Vogels G. D. Effects of staphylococcin 1580 on cells and membrane vesicles of Bacillus subtilis W23. Biochim Biophys Acta. 1978 Mar 20;539(3):386–397. doi: 10.1016/0304-4165(78)90042-9. [DOI] [PubMed] [Google Scholar]
- Yang C. C., Konisky J. Colicin V-treated Escherichia coli does not generate membrane potential. J Bacteriol. 1984 May;158(2):757–759. doi: 10.1128/jb.158.2.757-759.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
