Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1989 May 1;169(5):1607–1617. doi: 10.1084/jem.169.5.1607

A branched, synthetic octapeptide of ubiquitinated histone H2A as target of autoantibodies

PMCID: PMC2189308  PMID: 2541220

Abstract

Two peptides of eight (T2) and 10 (T1) residues corresponding to the branched moiety of ubiquitinated histone H2A have been synthesized and used for raising specific antibodies in rabbits. Antisera to peptide T1 reacted in ELISA with T1 and with H2A but not with ubiquitin; antisera to peptide T2 reacted with T2 but not with H2A or ubiquitin. When tested in immunoblotting, both peptide antisera reacted with ubiquitinated H2A but not with unconjugated H2A or with ubiquitin. Sera from patients with systemic lupus erythematosus (SLE) were shown previously to react with ubiquitin in ELISA and immunoblotting. When tested for their ability to react in ELISA with synthetic peptides T1 and T2, 96% of the SLE sera (diluted 1:500) that recognized ubiquitin also reacted with peptide T2. Of the SLE sera that did not react with ubiquitin, only 13% possessed antibodies able to bind peptide T2. Antibodies from seven SLE sera, purified on a T2-immunoadsorbent column, were also able to react either with H2A, and in three cases also with ubiquitin.

Full Text

The Full Text of this article is available as a PDF (700.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baer B. W., Rhodes D. Eukaryotic RNA polymerase II binds to nucleosome cores from transcribed genes. Nature. 1983 Feb 10;301(5900):482–488. doi: 10.1038/301482a0. [DOI] [PubMed] [Google Scholar]
  2. Bond U., Agell N., Haas A. L., Redman K., Schlesinger M. J. Ubiquitin in stressed chicken embryo fibroblasts. J Biol Chem. 1988 Feb 15;263(5):2384–2388. [PubMed] [Google Scholar]
  3. Busch H., Goldknopf I. L. Ubiquitin - protein conjugates. Mol Cell Biochem. 1981 Nov 13;40(3):173–187. doi: 10.1007/BF00224611. [DOI] [PubMed] [Google Scholar]
  4. Böhm L., Crane-Robinson C. Proteases as structural probes for chromatin: the domain structure of histones. Biosci Rep. 1984 May;4(5):365–386. doi: 10.1007/BF01122502. [DOI] [PubMed] [Google Scholar]
  5. Davie J. R., Nickel B. E. The ubiquitinated histone species are enriched in histone H1-depleted chromatin regions. Biochim Biophys Acta. 1987 Aug 25;909(3):183–189. doi: 10.1016/0167-4781(87)90076-5. [DOI] [PubMed] [Google Scholar]
  6. Davie J. R., Nickel B. E. The ubiquitinated histone species are enriched in histone H1-depleted chromatin regions. Biochim Biophys Acta. 1987 Aug 25;909(3):183–189. doi: 10.1016/0167-4781(87)90076-5. [DOI] [PubMed] [Google Scholar]
  7. Hardin J. A. The lupus autoantigens and the pathogenesis of systemic lupus erythematosus. Arthritis Rheum. 1986 Apr;29(4):457–460. doi: 10.1002/art.1780290401. [DOI] [PubMed] [Google Scholar]
  8. Hershko A., Ciechanover A. The ubiquitin pathway for the degradation of intracellular proteins. Prog Nucleic Acid Res Mol Biol. 1986;33:19-56, 301. doi: 10.1016/s0079-6603(08)60019-7. [DOI] [PubMed] [Google Scholar]
  9. Hershko A., Eytan E., Ciechanover A., Haas A. L. Immunochemical analysis of the turnover of ubiquitin-protein conjugates in intact cells. Relationship to the breakdown of abnormal proteins. J Biol Chem. 1982 Dec 10;257(23):13964–13970. [PubMed] [Google Scholar]
  10. Johns E. W. A method for the selective extraction of histone fractions f2(a)1 and f2(a)2 from calf thymus deoxyribonucleoprotein at pH7. Biochem J. 1967 Nov;105(2):611–614. doi: 10.1042/bj1050611. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Levinger L., Varshavsky A. Selective arrangement of ubiquitinated and D1 protein-containing nucleosomes within the Drosophila genome. Cell. 1982 Feb;28(2):375–385. doi: 10.1016/0092-8674(82)90355-5. [DOI] [PubMed] [Google Scholar]
  12. Louters L., Chalkley R. Exchange of histones H1, H2A, and H2B in vivo. Biochemistry. 1985 Jun 18;24(13):3080–3085. doi: 10.1021/bi00334a002. [DOI] [PubMed] [Google Scholar]
  13. Manetto V., Perry G., Tabaton M., Mulvihill P., Fried V. A., Smith H. T., Gambetti P., Autilio-Gambetti L. Ubiquitin is associated with abnormal cytoplasmic filaments characteristic of neurodegenerative diseases. Proc Natl Acad Sci U S A. 1988 Jun;85(12):4501–4505. doi: 10.1073/pnas.85.12.4501. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Matsui S. I., Seon B. K., Sandberg A. A. Disappearance of a structural chromatin protein A24 in mitosis: implications for molecular basis of chromatin condensation. Proc Natl Acad Sci U S A. 1979 Dec;76(12):6386–6390. doi: 10.1073/pnas.76.12.6386. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Mezquita J., Chiva M., Vidal S., Mezquita C. Effect of high mobility group nonhistone proteins HMG-20 (ubiquitin) and HMG-17 on histone deacetylase activity assayed in vitro. Nucleic Acids Res. 1982 Mar 11;10(5):1781–1797. doi: 10.1093/nar/10.5.1781. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Minota S., Cameron B., Welch W. J., Winfield J. B. Autoantibodies to the constitutive 73-kD member of the hsp70 family of heat shock proteins in systemic lupus erythematosus. J Exp Med. 1988 Oct 1;168(4):1475–1480. doi: 10.1084/jem.168.4.1475. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Mueller R. D., Yasuda H., Hatch C. L., Bonner W. M., Bradbury E. M. Identification of ubiquitinated histones 2A and 2B in Physarum polycephalum. Disappearance of these proteins at metaphase and reappearance at anaphase. J Biol Chem. 1985 Apr 25;260(8):5147–5153. [PubMed] [Google Scholar]
  18. Muller S., Briand J. P., Van Regenmortel M. H. Presence of antibodies to ubiquitin during the autoimmune response associated with systemic lupus erythematosus. Proc Natl Acad Sci U S A. 1988 Nov;85(21):8176–8180. doi: 10.1073/pnas.85.21.8176. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Muller S., Couppez M., Briand J. P., Gordon J., Sautière P., van Regenmortel M. H. Antigenic structure of histone H2B. Biochim Biophys Acta. 1985 Mar 1;827(3):235–246. doi: 10.1016/0167-4838(85)90208-0. [DOI] [PubMed] [Google Scholar]
  20. Muller S., Himmelspach K., Van Regenmortel M. H. Immunochemical localization of the C-terminal hexapeptide of histone H3 at the surface of chromatin subunits. EMBO J. 1982;1(4):421–425. doi: 10.1002/j.1460-2075.1982.tb01185.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Muller S., Isabey A., Couppez M., Plaue S., Sommermeyer G., Van Regenmortel M. H. Specificity of antibodies raised against triacetylated histone H4. Mol Immunol. 1987 Jul;24(7):779–789. doi: 10.1016/0161-5890(87)90062-9. [DOI] [PubMed] [Google Scholar]
  22. Muller S., Plaue S., Couppez M., Van Regenmortel M. H. Comparison of different methods for localizing antigenic regions in histone H2A. Mol Immunol. 1986 Jun;23(6):593–601. doi: 10.1016/0161-5890(86)90095-7. [DOI] [PubMed] [Google Scholar]
  23. Murti K. G., Smith H. T., Fried V. A. Ubiquitin is a component of the microtubule network. Proc Natl Acad Sci U S A. 1988 May;85(9):3019–3023. doi: 10.1073/pnas.85.9.3019. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Polla B. S. A role for heat shock proteins in inflammation? Immunol Today. 1988 May;9(5):134–137. doi: 10.1016/0167-5699(88)91199-1. [DOI] [PubMed] [Google Scholar]
  25. Rechsteiner M. Ubiquitin-mediated pathways for intracellular proteolysis. Annu Rev Cell Biol. 1987;3:1–30. doi: 10.1146/annurev.cb.03.110187.000245. [DOI] [PubMed] [Google Scholar]
  26. Ridsdale J. A., Davie J. R. Chicken erythrocyte polynucleosomes which are soluble at physiological ionic strength and contain linker histones are highly enriched in beta-globin gene sequences. Nucleic Acids Res. 1987 Feb 11;15(3):1081–1096. doi: 10.1093/nar/15.3.1081. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Roitt I. M., Cooke A. The role of autoantigen in autoimmunity. Immunol Lett. 1987 Dec;16(3-4):259–263. doi: 10.1016/0165-2478(87)90155-6. [DOI] [PubMed] [Google Scholar]
  28. Siegelman M., Bond M. W., Gallatin W. M., St John T., Smith H. T., Fried V. A., Weissman I. L. Cell surface molecule associated with lymphocyte homing is a ubiquitinated branched-chain glycoprotein. Science. 1986 Feb 21;231(4740):823–829. doi: 10.1126/science.3003913. [DOI] [PubMed] [Google Scholar]
  29. Stetler D. A., Cavallo T. Anti-RNA polymerase I antibodies: potential role in the induction and progression of murine lupus nephritis. J Immunol. 1987 Apr 1;138(7):2119–2123. [PubMed] [Google Scholar]
  30. Tan E. M., Chan E. K., Sullivan K. F., Rubin R. L. Antinuclear antibodies (ANAs): diagnostically specific immune markers and clues toward the understanding of systemic autoimmunity. Clin Immunol Immunopathol. 1988 May;47(2):121–141. doi: 10.1016/0090-1229(88)90066-9. [DOI] [PubMed] [Google Scholar]
  31. Thorne A. W., Sautiere P., Briand G., Crane-Robinson C. The structure of ubiquitinated histone H2B. EMBO J. 1987 Apr;6(4):1005–1010. doi: 10.1002/j.1460-2075.1987.tb04852.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. West M. H., Bonner W. M. Histone 2B can be modified by the attachment of ubiquitin. Nucleic Acids Res. 1980 Oct 24;8(20):4671–4680. doi: 10.1093/nar/8.20.4671. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Yamanaka H., Penning C. A., Willis E. H., Wasson D. B., Carson D. A. Characterization of human poly(ADP-ribose) polymerase with autoantibodies. J Biol Chem. 1988 Mar 15;263(8):3879–3883. [PubMed] [Google Scholar]
  34. Young D., Lathigra R., Hendrix R., Sweetser D., Young R. A. Stress proteins are immune targets in leprosy and tuberculosis. Proc Natl Acad Sci U S A. 1988 Jun;85(12):4267–4270. doi: 10.1073/pnas.85.12.4267. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES