Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1985 May;162(2):845–848. doi: 10.1128/jb.162.2.845-848.1985

Inducible xylitol dehydrogenases in enteric bacteria.

R C Doten, R P Mortlock
PMCID: PMC218933  PMID: 3886639

Abstract

Morganella morganii ATCC 25829, Providencia stuartii ATCC 25827, Serratia marcescens ATCC 13880, and Erwinia sp. strain 4D2P were found to induce a xylitol dehydrogenase when grown on a xylitol-containing medium. The xylitol dehydrogenases were partially purified from the four strains, and those from M. morganii ATCC 25829, P. stuartii ATCC 25827, and S. marcescens ATCC 13880 were all found to oxidize xylitol to D-xylulose. These three enzymes had KmS for xylitol of 7.1 to 16.4 mM and molecular weights ranging from 130,000 to 155,000. In contrast, the xylitol dehydrogenase from Erwinia sp. strain 4D2P oxidized xylitol at the C-4 position to produce L-xylulose, had a Km for xylitol of 72 mM, and had a molecular weight of 102,000.

Full text

PDF
845

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Burleigh B. D., Rigby P. W., Hartley B. S. A comparison of wild-type and mutant ribitol dehydrogenases from Klebsiella aerogenes. Biochem J. 1974 Nov;143(2):341–352. doi: 10.1042/bj1430341. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Charnetzky W. T., Mortlock R. P. Close genetic linkage of the determinants of the ribitol and D-arabitol catabolic pathways in Klebsiella aerogenes. J Bacteriol. 1974 Jul;119(1):176–182. doi: 10.1128/jb.119.1.176-182.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Charnetzky W. T., Mortlock R. P. D-Arabitol catabolic pathway in Klebsiella aerogenes. J Bacteriol. 1974 Jul;119(1):170–175. doi: 10.1128/jb.119.1.170-175.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Charnetzky W. T., Mortlock R. P. Ribitol catabolic pathway in Klebsiella aerogenes. J Bacteriol. 1974 Jul;119(1):162–169. doi: 10.1128/jb.119.1.162-169.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Doten R. C., Mortlock R. P. Characterization of xylitol-utilizing mutants of Erwinia uredovora. J Bacteriol. 1985 Feb;161(2):529–533. doi: 10.1128/jb.161.2.529-533.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Doten R. C., Mortlock R. P. Directed evolution of a second xylitol catabolic pathway in Klebsiella pneumoniae. J Bacteriol. 1984 Aug;159(2):730–735. doi: 10.1128/jb.159.2.730-735.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Doten R. C., Mortlock R. P. Production of D- and L-xylulose by mutants of Klebsiella pneumoniae and Erwinia uredovora. Appl Environ Microbiol. 1985 Jan;49(1):158–162. doi: 10.1128/aem.49.1.158-162.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Inderlied C. B., Mortlock R. P. Growth of Klebsiella aerogenes on xylitol: implications for bacterial enzyme evolution. J Mol Evol. 1977 Apr 29;9(2):181–190. doi: 10.1007/BF01732747. [DOI] [PubMed] [Google Scholar]
  9. Kelker N. E., Anderson R. L. Sorbitol metabolism in Aerobacter aerogenes. J Bacteriol. 1971 Jan;105(1):160–164. doi: 10.1128/jb.105.1.160-164.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. London J., Chace N. M. New pathway for the metabolism of pentitols. Proc Natl Acad Sci U S A. 1977 Oct;74(10):4296–4300. doi: 10.1073/pnas.74.10.4296. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. London J., Chace N. M. Pentitol metabolism in Lactobacillus casei. J Bacteriol. 1979 Dec;140(3):949–954. doi: 10.1128/jb.140.3.949-954.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Neuberger M. S., Patterson R. A., Hartley B. S. Purification and properties of Klebsiella aerogenes D-arabitol dehydrogenase. Biochem J. 1979 Oct 1;183(1):31–42. doi: 10.1042/bj1830031. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Oliver E. J., Bisson T. M., LeBlanc D. J., Mortlock R. P. D-Ribulose production by a mutant of Aerobacter aerogens. Anal Biochem. 1969 Feb;27(2):300–305. doi: 10.1016/0003-2697(69)90036-0. [DOI] [PubMed] [Google Scholar]
  14. Reiner A. M. Genes for ribitol and D-arabitol catabolism in Escherichia coli: their loci in C strains and absence in K-12 and B strains. J Bacteriol. 1975 Aug;123(2):530–536. doi: 10.1128/jb.123.2.530-536.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Rigby P. W., Burleigh B. D., Jr, Hartley B. S. Gene duplication in experimental enzyme evolution. Nature. 1974 Sep 20;251(5472):200–204. doi: 10.1038/251200a0. [DOI] [PubMed] [Google Scholar]
  16. Scangos G. A., Reiner A. M. Ribitol and D-arabitol catabolism in Escherichia coli. J Bacteriol. 1978 May;134(2):492–500. doi: 10.1128/jb.134.2.492-500.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Tanaka S., Lerner S. A., Lin E. C. Replacement of a phosphoenolpyruvate-dependent phosphotransferase by a nicotinamide adenine dinucleotide-linked dehydrogenase for the utilization of mannitol. J Bacteriol. 1967 Feb;93(2):642–648. doi: 10.1128/jb.93.2.642-648.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Wu T. T. Growth of a mutant of Escherichia coli K-12 on xylitol by recruiting enzymes for D-xylose and L1,2-propanediol metabolism. Biochim Biophys Acta. 1976 May 28;428(3):656–663. doi: 10.1016/0304-4165(76)90195-1. [DOI] [PubMed] [Google Scholar]
  19. Wu T. T., Lin E. C., Tanaka S. Mutants of Aerobacter aerogenes capable of utilizing xylitol as a novel carbon. J Bacteriol. 1968 Aug;96(2):447–456. doi: 10.1128/jb.96.2.447-456.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES