Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1989 Jun 1;169(6):1931–1946. doi: 10.1084/jem.169.6.1931

Cellular requirements for renal allograft rejection in the athymic nude rat

PMCID: PMC2189330  PMID: 2659723

Abstract

This study has examined the ability of adoptively transferred CD4+ and CD8+ T cells to mediate rejection of a fully allogeneic DA renal graft in the PVG nude rat. Transfer, at the time of transplantation, of naive CD4+ T cells caused rapid graft rejection and primed CD4+ cells were several times more potent. In contrast, naive or specifically sensitized CD8+ cells were entirely ineffective at mediating renal allograft rejection. Whereas nonrejecting grafts showed only a mild cellular infiltrate, rejecting grafts in CD4+ reconstituted animals showed a substantial infiltrate and many of the infiltrating cells had a phenotype (MRC OX8+, MRC OX19-), consistent with NK cells. Experiments using a mAb (HIS 41) against an allotypic determinant of the leukocyte common antigen confirmed that the majority (greater than 80%) of the cellular infiltrate in rejecting grafts derived from the host rather than from the CD4+ inoculum. Infiltrating mononuclear cells, obtained from rejecting allografts 7 d after transplantation in CD4+-injected PVG nude hosts, showed high levels of in vitro cytotoxicity against not only kidney donor strain Con A blasts but also third-party allogeneic Con A blasts, as well as against both NK and LAK susceptible targets. When splenocytes from nontransplanted nude PVG rats were tested in vitro they also demonstrated high levels of lytic activity against both NK and LAK susceptible targets as well as allogeneic Con A blasts, which were not susceptible to lysis by spleen cells from euthymic rats. These findings suggest that injected CD4+ cells may cause renal allograft rejection by the recruitment of extrathymically derived, widely alloreactive cells into the kidney in this model of graft rejection.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ager A., Fajumi J., Sparshott S. M., Ford W. L., Butcher G. W. Major histocompatibility complex control of NK-related allogeneic lymphocyte cytotoxicity in rats. The contributions of strong and medial transplantation antigens. Transplantation. 1988 Nov;46(5):762–767. doi: 10.1097/00007890-198811000-00025. [DOI] [PubMed] [Google Scholar]
  2. Armstrong H. E., Bolton E. M., McMillan I., Spencer S. C., Bradley J. A. Prolonged survival of actively enhanced rat renal allografts despite accelerated cellular infiltration and rapid induction of both class I and class II MHC antigens. J Exp Med. 1987 Mar 1;165(3):891–907. doi: 10.1084/jem.165.3.891. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Barclay A. N. The localization of populations of lymphocytes defined by monoclonal antibodies in rat lymphoid tissues. Immunology. 1981 Apr;42(4):593–600. [PMC free article] [PubMed] [Google Scholar]
  4. Bradley J. A., Mason D. W., Morris P. J. Evidence that rat renal allografts are rejected by cytotoxic T cells and not by nonspecific effectors. Transplantation. 1985 Feb;39(2):169–175. doi: 10.1097/00007890-198502000-00012. [DOI] [PubMed] [Google Scholar]
  5. Butcher G. W., Corvalán J. R., Licence D. R., Howard J. C. Immune response genes controlling responsiveness to major transplantation antigens. Specific major histocompatibility complex-linked defect for antibody responses to class I alloantigens. J Exp Med. 1982 Jan 1;155(1):303–320. doi: 10.1084/jem.155.1.303. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Butcher G. W., Howard J. C. Genetic control of transplant rejection. Transplantation. 1982 Oct;34(4):161–166. [PubMed] [Google Scholar]
  7. DUNN T. B., POTTER M. A transplantable mast-cell neoplasm in the mouse. J Natl Cancer Inst. 1957 Apr;18(4):587–601. [PubMed] [Google Scholar]
  8. Dallman M. J., Mason D. W., Webb M. The roles of host and donor cells in the rejection of skin allografts by T cell-deprived rats injected with syngeneic T cells. Eur J Immunol. 1982 Jun;12(6):511–518. doi: 10.1002/eji.1830120612. [DOI] [PubMed] [Google Scholar]
  9. Dijkstra C. D., Döpp E. A., Joling P., Kraal G. The heterogeneity of mononuclear phagocytes in lymphoid organs: distinct macrophage subpopulations in the rat recognized by monoclonal antibodies ED1, ED2 and ED3. Immunology. 1985 Mar;54(3):589–599. [PMC free article] [PubMed] [Google Scholar]
  10. Dorsch S., Roser B. The adoptive transfer of first-set allograft responses by recirculating small lymphocytes in the rat. Aust J Exp Biol Med Sci. 1974 Feb;52(1):33–44. doi: 10.1038/icb.1974.3. [DOI] [PubMed] [Google Scholar]
  11. Fabre J. W., Morris P. J. Studies on the specific suppression of renal allograft rejection in presensitised rats. Theoretical and clinical implications. Transplantation. 1975 Feb;19(2):121–133. doi: 10.1097/00007890-197502000-00004. [DOI] [PubMed] [Google Scholar]
  12. Fossum S., Ager A., Rolstad B. Specific inhibition of natural killer (NK) activity against different alloantigens. Immunogenetics. 1987;26(6):329–338. doi: 10.1007/BF00343700. [DOI] [PubMed] [Google Scholar]
  13. Fossum S., Smith M. E., Bell E. B., Ford W. L. The architecture of rat lymph nodes. III. The lymph nodes and lymph-borne cells of the congenitally athymic nude rat (rnu). Scand J Immunol. 1980;12(5):421–432. doi: 10.1111/j.1365-3083.1980.tb00086.x. [DOI] [PubMed] [Google Scholar]
  14. Fukumoto T., McMaster W. R., Williams A. F. Mouse monoclonal antibodies against rat major histocompatibility antigens. Two Ia antigens and expression of Ia and class I antigens in rat thymus. Eur J Immunol. 1982 Mar;12(3):237–243. doi: 10.1002/eji.1830120313. [DOI] [PubMed] [Google Scholar]
  15. Gillis S., Union N. A., Baker P. E., Smith K. A. The in vitro generation and sustained culture of nude mouse cytolytic T-lymphocytes. J Exp Med. 1979 Jun 1;149(6):1460–1476. doi: 10.1084/jem.149.6.1460. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Gurley K. E., Lowry R. P., Forbes R. D. Immune mechanisms in organ allograft rejection. II. T helper cells, delayed-type hypersensitivity, and rejection of renal allografts. Transplantation. 1983 Oct;36(4):401–405. [PubMed] [Google Scholar]
  17. Hall B. M., Dorsch S. E. Cells mediating allograft rejection. Immunol Rev. 1984;77:31–59. doi: 10.1111/j.1600-065x.1984.tb00717.x. [DOI] [PubMed] [Google Scholar]
  18. Hall B. M., Dorsch S., Roser B. The cellular basis of allograft rejection in vivo. I. The cellular requirements for first-set rejection of heart grafts. J Exp Med. 1978 Oct 1;148(4):878–889. doi: 10.1084/jem.148.4.878. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Hall B. M., de Saxe I., Dorsch S. E. The cellular basis of allograft rejection in vivo. III. Restoration of first-set rejection of heart grafts by T helper cells in irradiated rats. Transplantation. 1983 Dec;36(6):700–705. doi: 10.1097/00007890-198336060-00023. [DOI] [PubMed] [Google Scholar]
  20. Hart D. N., Fabre J. W. Endogenously produced Ia antigens within cells of convoluted tubules of rat kidney. J Immunol. 1981 Jun;126(6):2109–2113. [PubMed] [Google Scholar]
  21. Herbert J., Roser B. Lymphocyte subpopulations and memory of MHC antigens. I. Quantitative aspects of neonatal heart graft rejection in normal and immune rats. Transplantation. 1987 Apr;43(4):556–560. doi: 10.1097/00007890-198704000-00020. [DOI] [PubMed] [Google Scholar]
  22. Hsiung L., Barclay A. N., Brandon M. R., Sim E., Porter R. R. Purification of human C3b inactivator by monoclonal-antibody affinity chromatography. Biochem J. 1982 Apr 1;203(1):293–298. doi: 10.1042/bj2030293. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Hunt S. V., Fowler M. H. A repopulation assay for B and T lymphocyte stem cells employing radiation chimaeras. Cell Tissue Kinet. 1981 Jul;14(4):445–464. doi: 10.1111/j.1365-2184.1981.tb00551.x. [DOI] [PubMed] [Google Scholar]
  24. Hünig T., Bevan M. J. Specificity of cytotoxic T cells from athymic mice. J Exp Med. 1980 Sep 1;152(3):688–702. doi: 10.1084/jem.152.3.688. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Loveland B. E., Hogarth P. M., Ceredig R., McKenzie I. F. Cells mediating graft rejection in the mouse. I. Lyt-1 cells mediate skin graft rejection. J Exp Med. 1981 May 1;153(5):1044–1057. doi: 10.1084/jem.153.5.1044. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Lowry R. P., Gurley K. E., Forbes R. D. Immune mechanisms in organ allograft rejection. I. Delayed-type hypersensitivity and lymphocytotoxicity in heart graft rejection. Transplantation. 1983 Oct;36(4):391–401. doi: 10.1097/00007890-198310000-00009. [DOI] [PubMed] [Google Scholar]
  27. Mason D. W., Arthur R. P., Dallman M. J., Green J. R., Spickett G. P., Thomas M. L. Functions of rat T-lymphocyte subsets isolated by means of monoclonal antibodies. Immunol Rev. 1983;74:57–82. doi: 10.1111/j.1600-065x.1983.tb01084.x. [DOI] [PubMed] [Google Scholar]
  28. Mason D. W., Dallman M. J., Arthur R. P., Morris P. J. Mechanisms of allograft rejection: the roles of cytotoxic T-cells and delayed-type hypersensitivity. Immunol Rev. 1984;77:167–184. doi: 10.1111/j.1600-065x.1984.tb00721.x. [DOI] [PubMed] [Google Scholar]
  29. Mason D. W., Morris P. J. Effector mechanisms in allograft rejection. Annu Rev Immunol. 1986;4:119–145. doi: 10.1146/annurev.iy.04.040186.001003. [DOI] [PubMed] [Google Scholar]
  30. Mason D. W., Simmonds S. J. The autonomy of CD8+ T cells in vitro and in vivo. Immunology. 1988 Oct;65(2):249–257. [PMC free article] [PubMed] [Google Scholar]
  31. Mason D. W. Subsets of T cells in the rat mediating lethal graft versus-host disease. Transplantation. 1981 Sep;32(3):222–226. doi: 10.1097/00007890-198109000-00008. [DOI] [PubMed] [Google Scholar]
  32. Matis L. A., Cron R., Bluestone J. A. Major histocompatibility complex-linked specificity of gamma delta receptor-bearing T lymphocytes. Nature. 1987 Nov 19;330(6145):262–264. doi: 10.1038/330262a0. [DOI] [PubMed] [Google Scholar]
  33. Rolstad B., Ford W. L. The rapid elimination of allogeneic lymphocytes: relationship to established mechanisms of immunity and to lymphocyte traffic. Immunol Rev. 1983;73:87–113. doi: 10.1111/j.1600-065x.1983.tb01080.x. [DOI] [PubMed] [Google Scholar]
  34. Rosenberg A. S., Mizuochi T., Sharrow S. O., Singer A. Phenotype, specificity, and function of T cell subsets and T cell interactions involved in skin allograft rejection. J Exp Med. 1987 May 1;165(5):1296–1315. doi: 10.1084/jem.165.5.1296. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Spits H., Borst J., Terhorst C., de Vries J. E. The role of T cell differentiation markers in antigen-specific and lectin-dependent cellular cytotoxicity mediated by T8+ and T4+ human cytotoxic T cell clones directed at class I and class II MHC antigens. J Immunol. 1982 Oct;129(4):1563–1569. [PubMed] [Google Scholar]
  36. Sprent J., Schaefer M., Lo D., Korngold R. Properties of purified T cell subsets. II. In vivo responses to class I vs. class II H-2 differences. J Exp Med. 1986 Apr 1;163(4):998–1011. doi: 10.1084/jem.163.4.998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Steinmuller D. Which T cells mediate allograft rejection? Transplantation. 1985 Sep;40(3):229–233. doi: 10.1097/00007890-198509000-00001. [DOI] [PubMed] [Google Scholar]
  38. Strassman G., Bach F. H. OKT4+ cytotoxic T cells can lyse targets via class I molecules and can be blocked by monoclonal antibody against T4 molecules. J Immunol. 1984 Oct;133(4):1705–1709. [PubMed] [Google Scholar]
  39. Sunderland C. A., McMaster W. R., Williams A. F. Purification with monoclonal antibody of a predominant leukocyte-common antigen and glycoprotein from rat thymocytes. Eur J Immunol. 1979 Feb;9(2):155–159. doi: 10.1002/eji.1830090212. [DOI] [PubMed] [Google Scholar]
  40. Wagner H., Hardt C., Heeg K., Röllinghoff M., Pfizenmaier K. T-cell-derived helper factor allows in vivo induction of cytotoxic T cells in nu/nu mice. Nature. 1980 Mar 20;284(5753):278–278. doi: 10.1038/284278a0. [DOI] [PubMed] [Google Scholar]
  41. Winearls C. G., Fabre J. W., Millard P. R., Morris P. J. The combined use of antilymphocyte serum and cyclophosphamide to suppress renal allograft rejection in the rat. Clin Exp Immunol. 1979 Feb;35(2):242–249. [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES