Skip to main content

Some NLM-NCBI services and products are experiencing heavy traffic, which may affect performance and availability. We apologize for the inconvenience and appreciate your patience. For assistance, please contact our Help Desk at info@ncbi.nlm.nih.gov.

The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1989 Jun 1;169(6):2211–2225. doi: 10.1084/jem.169.6.2211

Resistance of cytolytic lymphocytes to perforin-mediated killing. Induction of resistance correlates with increase in cytotoxicity

PMCID: PMC2189341  PMID: 2786549

Abstract

CTL and NK cells cultured in vitro are known to produce a cytolytic pore-forming protein (PFP, perforin) localized in their cytoplasmic granules. Using purified perforin, we showed here that both cloned CTL and primary killer cell populations, including allospecific CTL, NK/lymphokine-activated killer cells, and MHC-non-restricted CTL, were more resistant to perforin-mediated killing than other lymphocyte populations and cell types. Similar results were obtained with both murine and human cytolytic lymphocyte populations. Resistance of killer cells to perforin correlated in general with their cytolytic capability. Thus, cells that have acquired competence to kill after stimulation with Con A, IL-2, or leukocyte-conditioned medium, were also the more resistant cells. IL-2-independent CTL lines and hybridomas derived in our laboratories could be triggered to become cytotoxic and perforin resistant by short-term stimulation with various cytokines, indicating that the acquisition of resistance to perforin- mediated lysis was independent of cell proliferation. Activation of one IL-2-independent CTL line with IL-2 also resulted in enhanced production of perforin and in enhanced serine esterase activity. The acquisition of cell resistance to perforin by these IL-2-independent cell lines after activation with stimulatory reagents was independent of protein and RNA neosynthesis: emetine, cycloheximide, and actinomycin D, while effectively blocking the incorporation of [35S]methionine into cell proteins, did not affect the induced increase in perforin resistance.

Full Text

The Full Text of this article is available as a PDF (1,011.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Berke G., Amos D. B. Mechanism of lymphocyte-mediated cytolysis. The LMC cycle and its role in transplantation immunity. Transplant Rev. 1973;17(0):71–107. doi: 10.1111/j.1600-065x.1973.tb00124.x. [DOI] [PubMed] [Google Scholar]
  2. Berke G. Cytotoxic T-lymphocytes. How do they function? Immunol Rev. 1983;72:5–42. doi: 10.1111/j.1600-065x.1983.tb01071.x. [DOI] [PubMed] [Google Scholar]
  3. Berke G., Rosen D. Highly lytic in vivo primed cytolytic T lymphocytes devoid of lytic granules and BLT-esterase activity acquire these constituents in the presence of T cell growth factors upon blast transformation in vitro. J Immunol. 1988 Sep 1;141(5):1429–1436. [PubMed] [Google Scholar]
  4. Blakely A., Gorman K., Ostergaard H., Svoboda K., Liu C. C., Young J. D., Clark W. R. Resistance of cloned cytotoxic T lymphocytes to cell-mediated cytotoxicity. J Exp Med. 1987 Oct 1;166(4):1070–1083. doi: 10.1084/jem.166.4.1070. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Dennert G., Anderson C. G., Prochazka G. High activity of N-alpha-benzyloxycarbonyl-L-lysine thiobenzyl ester serine esterase and cytolytic perforin in cloned cell lines is not demonstrable in in-vivo-induced cytotoxic effector cells. Proc Natl Acad Sci U S A. 1987 Jul;84(14):5004–5008. doi: 10.1073/pnas.84.14.5004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Garcia-Sanz J. A., Velotti F., MacDonald H. R., Masson D., Tschopp J., Nabholz M. Appearance of granule-associated molecules during activation of cytolytic T-lymphocyte precursors by defined stimuli. Immunology. 1988 May;64(1):129–134. [PMC free article] [PubMed] [Google Scholar]
  7. Gorman K., Liu C. C., Blakely A., Young J. D., Torbett B. E., Clark W. R. Cloned cytotoxic T lymphocytes as target cells. II. Polarity of lysis revisited. J Immunol. 1988 Oct 1;141(7):2211–2215. [PubMed] [Google Scholar]
  8. Henkart P. A. Mechanism of lymphocyte-mediated cytotoxicity. Annu Rev Immunol. 1985;3:31–58. doi: 10.1146/annurev.iy.03.040185.000335. [DOI] [PubMed] [Google Scholar]
  9. Jiang S. B., Persechini P. M., Zychlinsky A., Liu C. C., Perussia B., Young J. D. Resistance of cytolytic lymphocytes to perforin-mediated killing. Lack of correlation with complement-associated homologous species restriction. J Exp Med. 1988 Dec 1;168(6):2207–2219. doi: 10.1084/jem.168.6.2207. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Julius M. H., Simpson E., Herzenberg L. A. A rapid method for the isolation of functional thymus-derived murine lymphocytes. Eur J Immunol. 1973 Oct;3(10):645–649. doi: 10.1002/eji.1830031011. [DOI] [PubMed] [Google Scholar]
  11. Jung G., Martin D. E., Müller-Eberhard H. J. Induction of cytotoxicity in human peripheral blood mononuclear cells by monoclonal antibody OKT3. J Immunol. 1987 Jul 15;139(2):639–644. [PubMed] [Google Scholar]
  12. Kaufmann Y., Berke G., Eshhar Z. Cytotoxic T lymphocyte hybridomas that mediate specific tumor-cell lysis in vitro. Proc Natl Acad Sci U S A. 1981 Apr;78(4):2502–2506. doi: 10.1073/pnas.78.4.2502. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kaufmann Y., Berke G. Monoclonal cytotoxic T lymphocyte hybridomas capable of specific killing activity, antigenic responsiveness, and inducible interleukin secretion. J Immunol. 1983 Jul;131(1):50–56. [PubMed] [Google Scholar]
  14. Kaufmann Y., Chang A. E., Robb R. J., Rosenberg S. A. Mechanism of action of Cyclosporin A: inhibition of lymphokine secretion studied with antigen-stimulated T cell hybridomas. J Immunol. 1984 Dec;133(6):3107–3111. [PubMed] [Google Scholar]
  15. Kaufmann Y., Silverman T., Levi B. Z., Ozato K. Induction of c-ets and c-fos gene expression upon antigenic stimulation of a T cell hybridoma with inducible cytolytic capacity. J Exp Med. 1987 Sep 1;166(3):810–815. doi: 10.1084/jem.166.3.810. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kranz D. M., Eisen H. N. Resistance of cytotoxic T lymphocytes to lysis by a clone of cytotoxic T lymphocytes. Proc Natl Acad Sci U S A. 1987 May;84(10):3375–3379. doi: 10.1073/pnas.84.10.3375. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Martin D. E., Zalman L. S., Müller-Eberhard H. J. Induction of expression of cell-surface homologous restriction factor upon anti-CD3 stimulation of human peripheral lymphocytes. Proc Natl Acad Sci U S A. 1988 Jan;85(1):213–217. doi: 10.1073/pnas.85.1.213. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Masson D., Tschopp J. Isolation of a lytic, pore-forming protein (perforin) from cytolytic T-lymphocytes. J Biol Chem. 1985 Aug 5;260(16):9069–9072. [PubMed] [Google Scholar]
  19. Nagler-Anderson C., Verret C. R., Firmenich A. A., Berne M., Eisen H. N. Resistance of primary CD8+ cytotoxic T lymphocytes to lysis by cytotoxic granules from cloned T cell lines. J Immunol. 1988 Nov 15;141(10):3299–3305. [PubMed] [Google Scholar]
  20. Palladino M. A., Obata Y., Stockert E., Oettgen H. F. Characterization of interleukin 2-dependent cytotoxic T-cell clones: specificity, cell surface phenotype, and susceptibility to blocking by Lyt antisera. Cancer Res. 1983 Feb;43(2):572–576. [PubMed] [Google Scholar]
  21. Persechini P. M., Young J. D. The primary structure of the lymphocyte pore-forming protein perforin: partial amino acid sequencing and determination of isoelectric point. Biochem Biophys Res Commun. 1988 Oct 31;156(2):740–745. doi: 10.1016/s0006-291x(88)80905-7. [DOI] [PubMed] [Google Scholar]
  22. Perussia B., Starr S., Abraham S., Fanning V., Trinchieri G. Human natural killer cells analyzed by B73.1, a monoclonal antibody blocking Fc receptor functions. I. Characterization of the lymphocyte subset reactive with B73.1. J Immunol. 1983 May;130(5):2133–2141. [PubMed] [Google Scholar]
  23. Shin M. L., Hänsch G., Hu V. W., Nicholson-Weller A. Membrane factors responsible for homologous species restriction of complement-mediated lysis: evidence for a factor other than DAF operating at the stage of C8 and C9. J Immunol. 1986 Mar 1;136(5):1777–1782. [PubMed] [Google Scholar]
  24. Shinkai Y., Ishikawa H., Hattori M., Okumura K. Resistance of mouse cytolytic cells to pore-forming protein-mediated cytolysis. Eur J Immunol. 1988 Jan;18(1):29–33. doi: 10.1002/eji.1830180106. [DOI] [PubMed] [Google Scholar]
  25. Skinner M., Marbrook J. The most efficient cytotoxic T lymphocytes are the least susceptible to lysis. J Immunol. 1987 Aug 15;139(4):985–987. [PubMed] [Google Scholar]
  26. Verret C. R., Firmenich A. A., Kranz D. M., Eisen H. N. Resistance of cytotoxic T lymphocytes to the lytic effects of their toxic granules. J Exp Med. 1987 Nov 1;166(5):1536–1547. doi: 10.1084/jem.166.5.1536. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Vujanovic N. L., Herberman R. B., Maghazachi A. A., Hiserodt J. C. Lymphokine-activated killer cells in rats. III. A simple method for the purification of large granular lymphocytes and their rapid expansion and conversion into lymphokine-activated killer cells. J Exp Med. 1988 Jan 1;167(1):15–29. doi: 10.1084/jem.167.1.15. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Young J. D., Cohn Z. A. Cellular and humoral mechanisms of cytotoxicity: structural and functional analogies. Adv Immunol. 1987;41:269–332. doi: 10.1016/s0065-2776(08)60033-4. [DOI] [PubMed] [Google Scholar]
  29. Young J. D., Hengartner H., Podack E. R., Cohn Z. A. Purification and characterization of a cytolytic pore-forming protein from granules of cloned lymphocytes with natural killer activity. Cell. 1986 Mar 28;44(6):849–859. doi: 10.1016/0092-8674(86)90007-3. [DOI] [PubMed] [Google Scholar]
  30. Zalman L. S., Wood L. M., Müller-Eberhard H. J. Inhibition of antibody-dependent lymphocyte cytotoxicity by homologous restriction factor incorporated into target cell membranes. J Exp Med. 1987 Oct 1;166(4):947–955. doi: 10.1084/jem.166.4.947. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Zalman L. S., Wood L. M., Müller-Eberhard H. J. Isolation of a human erythrocyte membrane protein capable of inhibiting expression of homologous complement transmembrane channels. Proc Natl Acad Sci U S A. 1986 Sep;83(18):6975–6979. doi: 10.1073/pnas.83.18.6975. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES