Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1989 Jul 1;170(1):217–232. doi: 10.1084/jem.170.1.217

Tumor antigens defined by cloned immunological probes are highly polymorphic and are not detected on autologous normal cells

PMCID: PMC2189372  PMID: 2787379

Abstract

We have isolated UV light-induced and spontaneous tumors along with nonmalignant cells and tissues from each host. CD8+ CTL clones generated to a number of highly immunogenic UV-induced tumors did not react with autologous normal fibroblasts nor with autologous second tumors. Using up to 25 independently induced tumors as targets, these CTL clones were found to be uniquely specific for the particular tumor used for immunization even when multiple tumors isolated from the same animals were used as targets. In addition to this extensive antigenic diversity of independently induced tumors, we found that a single cancer cell can express multiple independent antigens that were uniquely expressed on the tumor but were not detectable on autologous nonmalignant fibroblasts. A poorly immunogenic spontaneous tumor was also found to express an antigen that was uniquely specific for the immunizing tumor in that it was absent from any of 25 other tumors tested. This antigen was recognized by a mAb and not detected on autologous nonmalignant fibroblasts or on an autologous second spontaneous tumor. These findings demonstrate that syngeneic CTL clones or mAbs can define unique antigens on UV-induced or spontaneous tumors. The use of autologous nonmalignant fibroblast targets made it unlikely that these antigens were widely expressed on normal cells. The availability of cloned immunological probes to antigens on tumors isolated with autologous normal cells will allow a reliable identification of the genetic origins of unique antigens on experimentally induced and spontaneous tumors and permit a decisive answer to whether these unique antigens are encoded by normal genes or by genes that have undergone somatic mutations; i.e., whether these antigens are truly tumor specific.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Basombrío M. A., Prehn R. T. Antigenic diversity of tumors chemically induced within the progeny of a single cell. Int J Cancer. 1972 Jul 15;10(1):1–8. doi: 10.1002/ijc.2910100102. [DOI] [PubMed] [Google Scholar]
  2. Basombrío M. A., Prehn R. T. Studies on the basis for diversity and time of appearance of antigens in chemically induced tumors. Natl Cancer Inst Monogr. 1972 Dec;35:117–124. [PubMed] [Google Scholar]
  3. Basombrío M. A. Search for common antigenicities among twenty-five sarcomas induced by methylcholanthrene. Cancer Res. 1970 Oct;30(10):2458–2462. [PubMed] [Google Scholar]
  4. Carswell E. A., Wanebo H. J., Old L. J., Boyse E. A. Immunogenic properties of reticulum cell sarcomas of SJL/J mice. J Natl Cancer Inst. 1970 Jun;44(6):1281–1288. [PubMed] [Google Scholar]
  5. Cerottini J. C., Engers H. D., Macdonald H. R., Brunner T. Generation of cytotoxic T lymphocytes in vitro. I. Response of normal and immune mouse spleen cells in mixed leukocyte cultures. J Exp Med. 1974 Sep 1;140(3):703–717. doi: 10.1084/jem.140.3.703. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Coffino P., Scharff M. D. Rate of somatic mutation in immunoglobulin production by mouse myeloma cells. Proc Natl Acad Sci U S A. 1971 Jan;68(1):219–223. doi: 10.1073/pnas.68.1.219. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. De Plaen E., Lurquin C., Van Pel A., Mariamé B., Szikora J. P., Wölfel T., Sibille C., Chomez P., Boon T. Immunogenic (tum-) variants of mouse tumor P815: cloning of the gene of tum- antigen P91A and identification of the tum- mutation. Proc Natl Acad Sci U S A. 1988 Apr;85(7):2274–2278. doi: 10.1073/pnas.85.7.2274. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Embleton M. J., Heidelberger C. Antigenicity of clones of mouse prostate cells transformed in vitro. Int J Cancer. 1972 Jan 15;9(1):8–18. doi: 10.1002/ijc.2910090103. [DOI] [PubMed] [Google Scholar]
  9. FOLEY E. J. Antigenic properties of methylcholanthrene-induced tumors in mice of the strain of origin. Cancer Res. 1953 Dec;13(12):835–837. [PubMed] [Google Scholar]
  10. Fisher M. S., Kripke M. L. Systemic alteration induced in mice by ultraviolet light irradiation and its relationship to ultraviolet carcinogenesis. Proc Natl Acad Sci U S A. 1977 Apr;74(4):1688–1692. doi: 10.1073/pnas.74.4.1688. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. GLOBERSON A., FELDMAN M. ANTIGENIC SPECIFICITY OF BENZO(A)PYRENE-INDUCED SARCOMAS. J Natl Cancer Inst. 1964 Jun;32:1229–1243. doi: 10.1093/jnci/32.6.1229. [DOI] [PubMed] [Google Scholar]
  12. Glasebrook A. L., Fitch F. W. Alloreactive cloned T cell lines. I. Interactions between cloned amplifier and cytolytic T cell lines. J Exp Med. 1980 Apr 1;151(4):876–895. doi: 10.1084/jem.151.4.876. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hewitt H. B. The choice of animal tumors for experimental studies of cancer therapy. Adv Cancer Res. 1978;27:149–200. doi: 10.1016/s0065-230x(08)60932-x. [DOI] [PubMed] [Google Scholar]
  14. Holland J. M., Mitchell T. J., Gipson L. C., Whitaker M. S. Survival and cause of death in aging germfree athymic nude and normal inbred C3Hf/He mice. J Natl Cancer Inst. 1978 Nov;61(5):1357–1361. doi: 10.1093/jnci/61.5.1357. [DOI] [PubMed] [Google Scholar]
  15. Hood L., Huang H. V., Dreyer W. J. The area-code hypothesis: the immune system provides clues to understanding the genetic and molecular basis of cell recognition during development. J Supramol Struct. 1977;7(3-4):531–559. doi: 10.1002/jss.400070321. [DOI] [PubMed] [Google Scholar]
  16. KLEIN G., SJOGREN H. O., KLEIN E., HELLSTROM K. E. Demonstration of resistance against methylcholanthrene-induced sarcomas in the primary autochthonous host. Cancer Res. 1960 Dec;20:1561–1572. [PubMed] [Google Scholar]
  17. King W., Patel M. D., Lobel L. I., Goff S. P., Nguyen-Huu M. C. Insertion mutagenesis of embryonal carcinoma cells by retroviruses. Science. 1985 May 3;228(4699):554–558. doi: 10.1126/science.3838595. [DOI] [PubMed] [Google Scholar]
  18. Kripke M. L. Antigenicity of murine skin tumors induced by ultraviolet light. J Natl Cancer Inst. 1974 Nov;53(5):1333–1336. doi: 10.1093/jnci/53.5.1333. [DOI] [PubMed] [Google Scholar]
  19. Kripke M. L., Fisher M. S. Immunologic parameters of ultraviolet carcinogenesis. J Natl Cancer Inst. 1976 Jul;57(1):211–215. doi: 10.1093/jnci/57.1.211. [DOI] [PubMed] [Google Scholar]
  20. Kripke M. L. Latency, histology, and antigenicity of tumors induced by ultraviolet light in three inbred mouse strains. Cancer Res. 1977 May;37(5):1395–1400. [PubMed] [Google Scholar]
  21. Lampson L. A., Levy R. A role for clonal antigens in cancer diagnosis and therapy. J Natl Cancer Inst. 1979 Feb;62(2):217–220. [PubMed] [Google Scholar]
  22. Lee D. R., Rubocki R. J., Lie W. R., Hansen T. H. The murine MHC class I genes, H-2Dq and H-2Lq, are strikingly homologous to each other, H-2Ld, and two genes reported to encode tumor-specific antigens. J Exp Med. 1988 Nov 1;168(5):1719–1739. doi: 10.1084/jem.168.5.1719. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Lemke H., Hammerling G. J., Hohmann C., Rajewsky K. Hybrid cell lines secreting monoclonal antibody specific for major histocompatibility antigens of the mouse. Nature. 1978 Jan 19;271(5642):249–251. doi: 10.1038/271249a0. [DOI] [PubMed] [Google Scholar]
  24. Linsk R., Vogel J., Stauss H., Forman J., Goodenow R. S. Structure and function of three novel MHC class I antigens derived from a C3H ultraviolet-induced fibrosarcoma. J Exp Med. 1986 Sep 1;164(3):794–813. doi: 10.1084/jem.164.3.794. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Middle J. G., Embleton M. J. Naturally arising tumors of the inbred WAB/Not rat strain. II. Immunogenicity of transplanted tumors. J Natl Cancer Inst. 1981 Sep;67(3):637–643. [PubMed] [Google Scholar]
  26. Morison W. L., Jerdan M. S., Hoover T. L., Farmer E. R. UV radiation-induced tumors in haired mice: identification as squamous cell carcinomas. J Natl Cancer Inst. 1986 Nov;77(5):1155–1162. [PubMed] [Google Scholar]
  27. Morton D. L., Miller G. F., Wood D. A. Demonstration of tumor-specific immunity against antigens unrelated to the mammary tumor virus in spontaneous mammary adenocarcinomas. J Natl Cancer Inst. 1969 Feb;42(2):289–301. [PubMed] [Google Scholar]
  28. Old L. J. Cancer immunology: the search for specificity--G. H. A. Clowes Memorial lecture. Cancer Res. 1981 Feb;41(2):361–375. [PubMed] [Google Scholar]
  29. PREHN R. T., MAIN J. M. Immunity to methylcholanthrene-induced sarcomas. J Natl Cancer Inst. 1957 Jun;18(6):769–778. [PubMed] [Google Scholar]
  30. Philipps C., McMillan M., Flood P. M., Murphy D. B., Forman J., Lancki D., Womack J. E., Goodenow R. S., Schreiber H. Identification of a unique tumor-specific antigen as a novel class I major histocompatibility molecule. Proc Natl Acad Sci U S A. 1985 Aug;82(15):5140–5144. doi: 10.1073/pnas.82.15.5140. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Seed B., Aruffo A. Molecular cloning of the CD2 antigen, the T-cell erythrocyte receptor, by a rapid immunoselection procedure. Proc Natl Acad Sci U S A. 1987 May;84(10):3365–3369. doi: 10.1073/pnas.84.10.3365. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Srivastava P. K., Old L. J. Individually distinct transplantation antigens of chemically induced mouse tumors. Immunol Today. 1988 Mar;9(3):78–83. doi: 10.1016/0167-5699(88)91269-8. [DOI] [PubMed] [Google Scholar]
  33. Stauss H. J., Linsk R., Fischer A., Watts S., Banasiak D., Haberman A., Clark I., Forman J., McMillan M., Schreiber H. Isolation of the MHC genes encoding the tumour-specific class I antigens expressed on a murine fibrosarcoma. J Immunogenet. 1986 Apr-Jun;13(2-3):101–111. doi: 10.1111/j.1744-313x.1986.tb01090.x. [DOI] [PubMed] [Google Scholar]
  34. Stauss H. J., Van Waes C., Fink M. A., Starr B., Schreiber H. Identification of a unique tumor antigen as rejection antigen by molecular cloning and gene transfer. J Exp Med. 1986 Nov 1;164(5):1516–1530. doi: 10.1084/jem.164.5.1516. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Urban J. L., Burton R. C., Holland J. M., Kripke M. L., Schreiber H. Mechanisms of syngeneic tumor rejection. Susceptibility of host-selected progressor variants to various immunological effector cells. J Exp Med. 1982 Feb 1;155(2):557–573. doi: 10.1084/jem.155.2.557. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Urban J. L., Kripke M. L., Schreiber H. Stepwise immunologic selection of antigenic variants during tumor growth. J Immunol. 1986 Nov 1;137(9):3036–3041. [PubMed] [Google Scholar]
  37. Uyttenhove C., Maryanski J., Boon T. Escape of mouse mastocytoma P815 after nearly complete rejection is due to antigen-loss variants rather than immunosuppression. J Exp Med. 1983 Mar 1;157(3):1040–1052. doi: 10.1084/jem.157.3.1040. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Vaage J. Nonvirus-associated antigens in virus-induced mouse mammary tumors. Cancer Res. 1968 Dec;28(12):2477–2483. [PubMed] [Google Scholar]
  39. Weiss A., Brunner K. T., MacDonald H. R., Cerottini J. C. Antigenic specificity of the cytolytic T lymphocyte response to murine sarcoma virus-induced tumors. III. Characterization of cytolytic T lymphocyte clones specific for Moloney leukemia virus-associated cell surface antigens. J Exp Med. 1980 Nov 1;152(5):1210–1225. doi: 10.1084/jem.152.5.1210. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Wortzel R. D., Philipps C., Schreiber H. Multiple tumour-specific antigens expressed on a single tumour cell. Nature. 1983 Jul 14;304(5922):165–167. doi: 10.1038/304165a0. [DOI] [PubMed] [Google Scholar]
  41. Wortzel R. D., Urban J. L., Philipps C., Fitch F. W., Schreiber H. Independent immunodominant and immunorecessive tumor-specific antigens on a malignant tumor: antigenic dissection with cytolytic T cell clones. J Immunol. 1983 May;130(5):2461–2466. [PubMed] [Google Scholar]
  42. Wortzel R. D., Urban J. L., Schreiber H. Malignant growth in the normal host after variant selection in vitro with cytolytic T-cell lines. Proc Natl Acad Sci U S A. 1984 Apr;81(7):2186–2190. doi: 10.1073/pnas.81.7.2186. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES