Abstract
We have isolated a 725-bp full-length cDNA clone for the human eosinophil cationic protein (ECP). ECP is a small, basic protein found in the matrix of the eosinophil's large specific granule that has cytotoxic, helminthotoxic, and ribonuclease activity, and is a member of the ribonuclease multigene family. The cDNA sequence shows 89% sequence identity with that reported for the related granule protein, eosinophil-derived neurotoxin (EDN). The open reading frame encodes a previously unidentified 27-amino acid leader sequence preceding a 133- residue mature ECP polypeptide with a molecular mass of 15.6 kD. The encoded amino acid sequence of ECP shows 66% identity to that of EDN and 31% identity to that of human pancreatic ribonuclease, including conservation of the essential structural cysteine and cataytic lysine and histidine residues. mRNA for ECP was detected in eosinophil- enriched peripheral granulocytes and in a subclone of the promyelocytic leukemia line, HL-60, induced toward eosinophilic differentiation with IL-5. No ECP mRNA was detected in uninduced HL-60 cells, or in HL-60 cells induced toward monocytic differentiation with vitamin D3 or toward neutrophilic differentiation with DMSO. In contrast, mRNA for EDN was detected in uninduced HL-60 cells and was upregulated in HL-60 cells induced with DMSO. Despite similarities in sequence and cellular localization, these results suggest that ECP and EDN are subject to different regulatory mechanisms.
Full Text
The Full Text of this article is available as a PDF (1.1 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ackerman S. J., Gleich G. J., Loegering D. A., Richardson B. A., Butterworth A. E. Comparative toxicity of purified human eosinophil granule cationic proteins for schistosomula of Schistosoma mansoni. Am J Trop Med Hyg. 1985 Jul;34(4):735–745. doi: 10.4269/ajtmh.1985.34.735. [DOI] [PubMed] [Google Scholar]
- Barker R. L., Gleich G. J., Pease L. R. Acidic precursor revealed in human eosinophil granule major basic protein cDNA. J Exp Med. 1988 Oct 1;168(4):1493–1498. doi: 10.1084/jem.168.4.1493. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Beintema J. J., Hofsteenge J., Iwama M., Morita T., Ohgi K., Irie M., Sugiyama R. H., Schieven G. L., Dekker C. A., Glitz D. G. Amino acid sequence of the nonsecretory ribonuclease of human urine. Biochemistry. 1988 Jun 14;27(12):4530–4538. doi: 10.1021/bi00412a046. [DOI] [PubMed] [Google Scholar]
- Blobel G., Dobberstein B. Transfer of proteins across membranes. I. Presence of proteolytically processed and unprocessed nascent immunoglobulin light chains on membrane-bound ribosomes of murine myeloma. J Cell Biol. 1975 Dec;67(3):835–851. doi: 10.1083/jcb.67.3.835. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chirgwin J. M., Przybyla A. E., MacDonald R. J., Rutter W. J. Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry. 1979 Nov 27;18(24):5294–5299. doi: 10.1021/bi00591a005. [DOI] [PubMed] [Google Scholar]
- Collins S. J. The HL-60 promyelocytic leukemia cell line: proliferation, differentiation, and cellular oncogene expression. Blood. 1987 Nov;70(5):1233–1244. [PubMed] [Google Scholar]
- DeGrado W. F., Musso G. F., Lieber M., Kaiser E. T., Kézdy F. J. Kinetics and mechanism of hemolysis induced by melittin and by a synthetic melittin analogue. Biophys J. 1982 Jan;37(1):329–338. doi: 10.1016/S0006-3495(82)84681-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Durack D. T., Ackerman S. J., Loegering D. A., Gleich G. J. Purification of human eosinophil-derived neurotoxin. Proc Natl Acad Sci U S A. 1981 Aug;78(8):5165–5169. doi: 10.1073/pnas.78.8.5165. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Durack D. T., Sumi S. M., Klebanoff S. J. Neurotoxicity of human eosinophils. Proc Natl Acad Sci U S A. 1979 Mar;76(3):1443–1447. doi: 10.1073/pnas.76.3.1443. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fauci A. S., Harley J. B., Roberts W. C., Ferrans V. J., Gralnick H. R., Bjornson B. H. NIH conference. The idiopathic hypereosinophilic syndrome. Clinical, pathophysiologic, and therapeutic considerations. Ann Intern Med. 1982 Jul;97(1):78–92. doi: 10.7326/0003-4819-97-1-78. [DOI] [PubMed] [Google Scholar]
- Feinberg A. P., Vogelstein B. "A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity". Addendum. Anal Biochem. 1984 Feb;137(1):266–267. doi: 10.1016/0003-2697(84)90381-6. [DOI] [PubMed] [Google Scholar]
- Fett J. W., Strydom D. J., Lobb R. R., Alderman E. M., Bethune J. L., Riordan J. F., Vallee B. L. Isolation and characterization of angiogenin, an angiogenic protein from human carcinoma cells. Biochemistry. 1985 Sep 24;24(20):5480–5486. doi: 10.1021/bi00341a030. [DOI] [PubMed] [Google Scholar]
- Fischkoff S. A., Pollak A., Gleich G. J., Testa J. R., Misawa S., Reber T. J. Eosinophilic differentiation of the human promyelocytic leukemia cell line, HL-60. J Exp Med. 1984 Jul 1;160(1):179–196. doi: 10.1084/jem.160.1.179. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fredens K., Dahl R., Venge P. The Gordon phenomenon induced by the eosinophil cationic protein and eosinophil protein X. J Allergy Clin Immunol. 1982 Nov;70(5):361–366. doi: 10.1016/0091-6749(82)90025-2. [DOI] [PubMed] [Google Scholar]
- Gleich G. J., Adolphson C. R. The eosinophilic leukocyte: structure and function. Adv Immunol. 1986;39:177–253. doi: 10.1016/s0065-2776(08)60351-x. [DOI] [PubMed] [Google Scholar]
- Gleich G. J., Loegering D. A., Bell M. P., Checkel J. L., Ackerman S. J., McKean D. J. Biochemical and functional similarities between human eosinophil-derived neurotoxin and eosinophil cationic protein: homology with ribonuclease. Proc Natl Acad Sci U S A. 1986 May;83(10):3146–3150. doi: 10.1073/pnas.83.10.3146. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gullberg U., Widegren B., Arnason U., Egesten A., Olsson I. The cytotoxic eosinophil cationic protein (ECP) has ribonuclease activity. Biochem Biophys Res Commun. 1986 Sep 30;139(3):1239–1242. doi: 10.1016/s0006-291x(86)80310-2. [DOI] [PubMed] [Google Scholar]
- Hart G. W., Brew K., Grant G. A., Bradshaw R. A., Lennarz W. J. Primary structural requirements for the enzymatic formation of the N-glycosidic bond in glycoproteins. Studies with natural and synthetic peptides. J Biol Chem. 1979 Oct 10;254(19):9747–9753. [PubMed] [Google Scholar]
- Kozak M. Point mutations define a sequence flanking the AUG initiator codon that modulates translation by eukaryotic ribosomes. Cell. 1986 Jan 31;44(2):283–292. doi: 10.1016/0092-8674(86)90762-2. [DOI] [PubMed] [Google Scholar]
- Kronquist K. E., Lennarz W. J. Enzymatic conversion of proteins to glycoproteins by lipid-linked saccharides: a study of potential exogenous acceptor proteins. J Supramol Struct. 1978;8(1):51–65. doi: 10.1002/jss.400080105. [DOI] [PubMed] [Google Scholar]
- Kurachi K., Davie E. W., Strydom D. J., Riordan J. F., Vallee B. L. Sequence of the cDNA and gene for angiogenin, a human angiogenesis factor. Biochemistry. 1985 Sep 24;24(20):5494–5499. doi: 10.1021/bi00341a032. [DOI] [PubMed] [Google Scholar]
- Kurihara M., Ogawa M., Ohta T., Kurokawa E., Kitahara T., Murata A., Matsuda K., Kosaki G., Watanabe T., Wada H. Radioimmunoassay for human pancreatic ribonuclease and measurement of serum immunoreactive pancreatic ribonuclease in patients with malignant tumors. Cancer Res. 1984 May;44(5):2240–2243. [PubMed] [Google Scholar]
- McGrogan M., Simonsen C., Scott R., Griffith J., Ellis N., Kennedy J., Campanelli D., Nathan C., Gabay J. Isolation of a complementary DNA clone encoding a precursor to human eosinophil major basic protein. J Exp Med. 1988 Dec 1;168(6):2295–2308. doi: 10.1084/jem.168.6.2295. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McLaren D. J., McKean J. R., Olsson I., Venges P., Kay A. B. Morphological studies on the killing of schistosomula of Schistosoma mansoni by human eosinophil and neutrophil cationic proteins in vitro. Parasite Immunol. 1981 Winter;3(4):359–373. doi: 10.1111/j.1365-3024.1981.tb00414.x. [DOI] [PubMed] [Google Scholar]
- Molina H. A., Kierszenbaum F., Hamann K. J., Gleich G. J. Toxic effects produced or mediated by human eosinophil granule components on Trypanosoma cruzi. Am J Trop Med Hyg. 1988 Mar;38(2):327–334. doi: 10.4269/ajtmh.1988.38.327. [DOI] [PubMed] [Google Scholar]
- Niwata Y., Ohgi K., Sanda A., Takizawa Y., Irie M. Purification and properties of bovine kidney ribonucleases. J Biochem. 1985 Mar;97(3):923–934. doi: 10.1093/oxfordjournals.jbchem.a135134. [DOI] [PubMed] [Google Scholar]
- O'Donnell M. C., Ackerman S. J., Gleich G. J., Thomas L. L. Activation of basophil and mast cell histamine release by eosinophil granule major basic protein. J Exp Med. 1983 Jun 1;157(6):1981–1991. doi: 10.1084/jem.157.6.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ohta T., Ogawa M., Kurihara M., Kitahara T., Kosaki G. Purification, characterization and development of radioimmunoassay of human liver ribonuclease. Clin Chim Acta. 1982 Sep 1;124(1):51–62. doi: 10.1016/0009-8981(82)90319-9. [DOI] [PubMed] [Google Scholar]
- Olsson I., Venge P. Cationic proteins of human granulocytes. II. Separation of the cationic proteins of the granules of leukemic myeloid cells. Blood. 1974 Aug;44(2):235–246. [PubMed] [Google Scholar]
- Olsson I., Venge P., Spitznagel J. K., Lehrer R. I. Arginine-rich cationic proteins of human eosinophil granules: comparison of the constituents of eosinophilic and neutrophilic leukocytes. Lab Invest. 1977 May;36(5):493–500. [PubMed] [Google Scholar]
- Peterson C. G., Skoog V., Venge P. Human eosinophil cationic proteins (ECP and EPX) and their suppressive effects on lymphocyte proliferation. Immunobiology. 1986 Mar;171(1-2):1–13. doi: 10.1016/S0171-2985(86)80013-4. [DOI] [PubMed] [Google Scholar]
- Peterson C. G., Venge P. Purification and characterization of a new cationic protein--eosinophil protein-X (EPX)--from granules of human eosinophils. Immunology. 1983 Sep;50(1):19–26. [PMC free article] [PubMed] [Google Scholar]
- Pless D. D., Lennarz W. J. Enzymatic conversion of proteins to glycoproteins. Proc Natl Acad Sci U S A. 1977 Jan;74(1):134–138. doi: 10.1073/pnas.74.1.134. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rosenberg H. F., Tenen D. G., Ackerman S. J. Molecular cloning of the human eosinophil-derived neurotoxin: a member of the ribonuclease gene family. Proc Natl Acad Sci U S A. 1989 Jun;86(12):4460–4464. doi: 10.1073/pnas.86.12.4460. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schuster S. J., Badiavas E. V., Costa-Giomi P., Weinmann R., Erslev A. J., Caro J. Stimulation of erythropoietin gene transcription during hypoxia and cobalt exposure. Blood. 1989 Jan;73(1):13–16. [PubMed] [Google Scholar]
- Shapiro R., Riordan J. F., Vallee B. L. Characteristic ribonucleolytic activity of human angiogenin. Biochemistry. 1986 Jun 17;25(12):3527–3532. doi: 10.1021/bi00360a008. [DOI] [PubMed] [Google Scholar]
- Sierakowska H., Shugar D. Mammalian nucleolytic enzymes. Prog Nucleic Acid Res Mol Biol. 1977;20:59–130. doi: 10.1016/s0079-6603(08)60470-5. [DOI] [PubMed] [Google Scholar]
- Slifman N. R., Loegering D. A., McKean D. J., Gleich G. J. Ribonuclease activity associated with human eosinophil-derived neurotoxin and eosinophil cationic protein. J Immunol. 1986 Nov 1;137(9):2913–2917. [PubMed] [Google Scholar]
- Sorrentino S., Tucker G. K., Glitz D. G. Purification and characterization of a ribonuclease from human liver. J Biol Chem. 1988 Nov 5;263(31):16125–16131. [PubMed] [Google Scholar]
- Strydom D. J., Fett J. W., Lobb R. R., Alderman E. M., Bethune J. L., Riordan J. F., Vallee B. L. Amino acid sequence of human tumor derived angiogenin. Biochemistry. 1985 Sep 24;24(20):5486–5494. doi: 10.1021/bi00341a031. [DOI] [PubMed] [Google Scholar]
- Tai P. C., Ackerman S. J., Spry C. J., Dunnette S., Olsen E. G., Gleich G. J. Deposits of eosinophil granule proteins in cardiac tissues of patients with eosinophilic endomyocardial disease. Lancet. 1987 Mar 21;1(8534):643–647. doi: 10.1016/s0140-6736(87)90412-0. [DOI] [PubMed] [Google Scholar]
- Tai P. C., Spry C. J., Peterson C., Venge P., Olsson I. Monoclonal antibodies distinguish between storage and secreted forms of eosinophil cationic protein. Nature. 1984 May 10;309(5964):182–184. doi: 10.1038/309182a0. [DOI] [PubMed] [Google Scholar]
- Terwilliger T. C., Weissman L., Eisenberg D. The structure of melittin in the form I crystals and its implication for melittin's lytic and surface activities. Biophys J. 1982 Jan;37(1):353–361. doi: 10.1016/S0006-3495(82)84683-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tomonaga M., Gasson J. C., Quan S. G., Golde D. W. Establishment of eosinophilic sublines from human promyelocytic leukemia (HL-60) cells: demonstration of multipotentiality and single-lineage commitment of HL-60 stem cells. Blood. 1986 May;67(5):1433–1441. [PubMed] [Google Scholar]
- Tosteson M. T., Alvarez O., Tosteson D. C. Peptides as promoters of ion-permeable channels. Regul Pept Suppl. 1985;4:39–45. doi: 10.1016/0167-0115(85)90216-2. [DOI] [PubMed] [Google Scholar]
- Venge P., Dahl R., Hällgren R. Enhancement of factor XII dependent reactions by eosinophil cationic protein. Thromb Res. 1979;14(4-5):641–649. doi: 10.1016/0049-3848(79)90119-1. [DOI] [PubMed] [Google Scholar]
- Wallace R. B., Miyada C. G. Oligonucleotide probes for the screening of recombinant DNA libraries. Methods Enzymol. 1987;152:432–442. doi: 10.1016/0076-6879(87)52050-x. [DOI] [PubMed] [Google Scholar]
- Wasmoen T. L., Bell M. P., Loegering D. A., Gleich G. J., Prendergast F. G., McKean D. J. Biochemical and amino acid sequence analysis of human eosinophil granule major basic protein. J Biol Chem. 1988 Sep 5;263(25):12559–12563. [PubMed] [Google Scholar]
- Weickmann J. L., Elson M., Glitz D. G. Purification and characterization of human pancreatic ribonuclease. Biochemistry. 1981 Mar 3;20(5):1272–1278. doi: 10.1021/bi00508a035. [DOI] [PubMed] [Google Scholar]
- Weickmann J. L., Glitz D. G. Human ribonucleases. Quantitation of pancreatic-like enzymes in serum, urine, and organ preparations. J Biol Chem. 1982 Aug 10;257(15):8705–8710. [PubMed] [Google Scholar]
- Young J. D., Peterson C. G., Venge P., Cohn Z. A. Mechanism of membrane damage mediated by human eosinophil cationic protein. Nature. 1986 Jun 5;321(6070):613–616. doi: 10.1038/321613a0. [DOI] [PubMed] [Google Scholar]
- Zheutlin L. M., Ackerman S. J., Gleich G. J., Thomas L. L. Stimulation of basophil and rat mast cell histamine release by eosinophil granule-derived cationic proteins. J Immunol. 1984 Oct;133(4):2180–2185. [PubMed] [Google Scholar]
- von Heijne G. A new method for predicting signal sequence cleavage sites. Nucleic Acids Res. 1986 Jun 11;14(11):4683–4690. doi: 10.1093/nar/14.11.4683. [DOI] [PMC free article] [PubMed] [Google Scholar]