Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1989 Jul 1;170(1):315–320. doi: 10.1084/jem.170.1.315

Independent regulation of Ca2+ entry and release from internal stores in activated B cells

PMCID: PMC2189379  PMID: 2787382

Abstract

Addition of crosslinking antibody to B lymphocytes results in a rapid rise in cytoplasmic-free Ca2+ ([Ca2+]i) due to release of Ca2+ from internal stores and uptake of Ca2+ across the plasma membrane. Inositol 1,4,5-trisphosphate is believed to mediate the release of internal Ca2+ stores and has also been proposed to mediate extracellular Ca2+ entry. We have compared the properties of these two pathways for Ca2+ mobilization by dissociating the [Ca2+]i changes in ligand-activated human B cells after loading of the cells with the Ca2+ chelator BAPTA. In the present paper we show that: (a) the sustained increase in [Ca2+]i is due to increased unidirectional influx of external [Ca2+]i; (b) entry of extracellular Ca2+, but not release of internal stores, is sensitive to the transmembrane potential; and (c) entry of extracellular Ca2+, but not release of internal stores, is inhibited by increasing [Ca2+]i. These findings suggest that the permeation pathways mediating the translocation of Ca2+ across the plasma membrane and endoplasmic reticulum membrane are not identical.

Full Text

The Full Text of this article is available as a PDF (350.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Berridge M. J. Inositol trisphosphate and diacylglycerol as second messengers. Biochem J. 1984 Jun 1;220(2):345–360. doi: 10.1042/bj2200345. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Berridge M. J., Irvine R. F. Inositol trisphosphate, a novel second messenger in cellular signal transduction. Nature. 1984 Nov 22;312(5992):315–321. doi: 10.1038/312315a0. [DOI] [PubMed] [Google Scholar]
  3. Bijsterbosch M. K., Rigley K. P., Klaus G. G. Cross-linking of surface immunoglobulin on B lymphocytes induces both intracellular Ca2+ release and Ca2+ influx: analysis with indo-1. Biochem Biophys Res Commun. 1986 May 29;137(1):500–506. doi: 10.1016/0006-291x(86)91238-6. [DOI] [PubMed] [Google Scholar]
  4. Cheung R. K., Grinstein S., Gelfand E. W. Volume regulation by human lymphocytes. Identification of differences between the two major lymphocyte subpopulations. J Clin Invest. 1982 Sep;70(3):632–638. doi: 10.1172/JCI110657. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Gelfand E. W., Cheung R. K., Grinstein S. Mitogen-induced changes in Ca2+ permeability are not mediated by voltage-gated K+ channels. J Biol Chem. 1986 Sep 5;261(25):11520–11523. [PubMed] [Google Scholar]
  6. Irvine R. F., Moor R. M. Micro-injection of inositol 1,3,4,5-tetrakisphosphate activates sea urchin eggs by a mechanism dependent on external Ca2+. Biochem J. 1986 Dec 15;240(3):917–920. doi: 10.1042/bj2400917. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Ishida Y., Chused T. M. Heterogeneity of lymphocyte calcium metabolism is caused by T cell-specific calcium-sensitive potassium channel and sensitivity of the calcium ATPase pump to membrane potential. J Exp Med. 1988 Sep 1;168(3):839–852. doi: 10.1084/jem.168.3.839. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Kuno M., Gardner P. Ion channels activated by inositol 1,4,5-trisphosphate in plasma membrane of human T-lymphocytes. Nature. 1987 Mar 19;326(6110):301–304. doi: 10.1038/326301a0. [DOI] [PubMed] [Google Scholar]
  9. Kuno M., Goronzy J., Weyand C. M., Gardner P. Single-channel and whole-cell recordings of mitogen-regulated inward currents in human cloned helper T lymphocytes. Nature. 1986 Sep 18;323(6085):269–273. doi: 10.1038/323269a0. [DOI] [PubMed] [Google Scholar]
  10. MacDougall S. L., Grinstein S., Gelfand E. W. Activation of Ca2+-dependent K+ channels in human B lymphocytes by anti-immunoglobulin. J Clin Invest. 1988 Feb;81(2):449–454. doi: 10.1172/JCI113340. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. MacDougall S. L., Grinstein S., Gelfand E. W. Detection of ligand-activated conductive Ca2+ channels in human B lymphocytes. Cell. 1988 Jul 15;54(2):229–234. doi: 10.1016/0092-8674(88)90555-7. [DOI] [PubMed] [Google Scholar]
  12. Nishizuka Y. The role of protein kinase C in cell surface signal transduction and tumour promotion. Nature. 1984 Apr 19;308(5961):693–698. doi: 10.1038/308693a0. [DOI] [PubMed] [Google Scholar]
  13. Putney J. W., Jr A model for receptor-regulated calcium entry. Cell Calcium. 1986 Feb;7(1):1–12. doi: 10.1016/0143-4160(86)90026-6. [DOI] [PubMed] [Google Scholar]
  14. von Tscharner V., Prod'hom B., Baggiolini M., Reuter H. Ion channels in human neutrophils activated by a rise in free cytosolic calcium concentration. 1986 Nov 27-Dec 3Nature. 324(6095):369–372. doi: 10.1038/324369a0. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES