Abstract
The anaphylatoxin C5a is a potent trigger for basophil degranulations, but in contrast to IgE-dependent basophil activation, it does not result in the synthesis of sulfidoleukotrienes (leukotriene C4/D4/E4). Thus, degranulation and the generation of lipid mediators are separately regulated cellular responses. Exposure of human blood basophils to the cytokine IL-3 alone does not induce the release of histamine in cells from most donors and never leads to the generation of LTC4, indicating that IL-3 is not a direct agonist for basophil mediator release. However, preincubation of basophils with IL-3 enhances the degranulation response to C5a. Most importantly, IL-3 "primes" basophils to release large amounts of leukotriene C4 after challenge with C5a (mean of 50 gp LTC4 per nanograms cellular histamine), while neither peptide alone is capable of inducing the formation of bioactive lipids. This effect is dose dependent, occurring at IL-3 concentrations considerably lower than are required to stimulate the growth of bone marrow progenitor cells. IL-3 affects the extent but not the time course of basophil degranulation, and leukotriene release of cells sequentially exposed to IL-3 and C5a occurs very rapidly concomitant with degranulation. A preincubation of the basophils with IL-3 is strictly required for C5a-induced LTC4 synthesis, but not for an enhancement of degranulation. Priming for C5a- induced lipid mediator generation occurs rapidly after exposure of the cells to IL-3, starting at 1 min and reaching maximal effects at 5 min, but this altered state of responsiveness is relatively long lasting. Cell fractionation studies indicate that the basophil is the source of lipid mediators and that IL-3 affects the basophil response directly. This study demonstrates that IL-3 is a potent modifier of effector functions of mature basophils; this is possibly of greater in vivo significance than its growth factor properties. The large amounts of LTC4 formed after triggering of IL-3-primed basophils may not only enhance but also qualitatively change the pathophysiological consequences of complement activation, and this might be important in the pathogenesis of immediate type hypersensitivity reactions, shock syndromes, and inflammation.
Full Text
The Full Text of this article is available as a PDF (893.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Burch R. M., Luini A., Axelrod J. Phospholipase A2 and phospholipase C are activated by distinct GTP-binding proteins in response to alpha 1-adrenergic stimulation in FRTL5 thyroid cells. Proc Natl Acad Sci U S A. 1986 Oct;83(19):7201–7205. doi: 10.1073/pnas.83.19.7201. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Clancy R. M., Hugli T. E. The extraction of leukotrienes (LTC4, LTD4, and LTE4) from tissue fluids: the metabolism of these mediators during IgE-dependent hypersensitivity reactions in lung. Anal Biochem. 1983 Aug;133(1):30–39. doi: 10.1016/0003-2697(83)90218-x. [DOI] [PubMed] [Google Scholar]
- Clark M. A., Conway T. M., Shorr R. G., Crooke S. T. Identification and isolation of a mammalian protein which is antigenically and functionally related to the phospholipase A2 stimulatory peptide melittin. J Biol Chem. 1987 Mar 25;262(9):4402–4406. [PubMed] [Google Scholar]
- Clark S. C., Kamen R. The human hematopoietic colony-stimulating factors. Science. 1987 Jun 5;236(4806):1229–1237. doi: 10.1126/science.3296190. [DOI] [PubMed] [Google Scholar]
- Dahinden C. A., Clancy R. M., Gross M., Chiller J. M., Hugli T. E. Leukotriene C4 production by murine mast cells: evidence of a role for extracellular leukotriene A4. Proc Natl Acad Sci U S A. 1985 Oct;82(19):6632–6636. doi: 10.1073/pnas.82.19.6632. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dahinden C. A., Fehr J., Hugli T. E. Role of cell surface contact in the kinetics of superoxide production by granulocytes. J Clin Invest. 1983 Jul;72(1):113–121. doi: 10.1172/JCI110948. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dahinden C. A., Zingg J., Maly F. E., de Weck A. L. Leukotriene production in human neutrophils primed by recombinant human granulocyte/macrophage colony-stimulating factor and stimulated with the complement component C5A and FMLP as second signals. J Exp Med. 1988 Apr 1;167(4):1281–1295. doi: 10.1084/jem.167.4.1281. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ezeamuzie I. C., Assem E. S. Modulation of the effect of histamine-releasing lymphokine on human basophils. Agents Actions. 1984 Apr;14(3-4):501–505. doi: 10.1007/BF01973859. [DOI] [PubMed] [Google Scholar]
- Findlay S. R., Lichtenstein L. M., Grant J. A. Generation of slow reacting substance by human leukocytes. II. Comparison of stimulation by antigen, anti-IgE, calcium ionophore, and C5-peptide. J Immunol. 1980 Jan;124(1):238–242. [PubMed] [Google Scholar]
- Goetzl E. J., Foster D. W., Payan D. G. A basophil-activating factor from human T lymphocytes. Immunology. 1984 Oct;53(2):227–234. [PMC free article] [PubMed] [Google Scholar]
- Grabstein K. H., Urdal D. L., Tushinski R. J., Mochizuki D. Y., Price V. L., Cantrell M. A., Gillis S., Conlon P. J. Induction of macrophage tumoricidal activity by granulocyte-macrophage colony-stimulating factor. Science. 1986 Apr 25;232(4749):506–508. doi: 10.1126/science.3083507. [DOI] [PubMed] [Google Scholar]
- Haak-Frendscho M., Arai N., Arai K., Baeza M. L., Finn A., Kaplan A. P. Human recombinant granulocyte-macrophage colony-stimulating factor and interleukin 3 cause basophil histamine release. J Clin Invest. 1988 Jul;82(1):17–20. doi: 10.1172/JCI113567. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hirai K., Morita Y., Misaki Y., Ohta K., Takaishi T., Suzuki S., Motoyoshi K., Miyamoto T. Modulation of human basophil histamine release by hemopoietic growth factors. J Immunol. 1988 Dec 1;141(11):3958–3964. [PubMed] [Google Scholar]
- Hirata F., Matsuda K., Notsu Y., Hattori T., del Carmine R. Phosphorylation at a tyrosine residue of lipomodulin in mitogen-stimulated murine thymocytes. Proc Natl Acad Sci U S A. 1984 Aug;81(15):4717–4721. doi: 10.1073/pnas.81.15.4717. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hugli T. E., Gerard C., Kawahara M., Scheetz M. E., 2nd, Barton R., Briggs S., Koppel G., Russell S. Isolation of three separate anaphylatoxins from complement-activated human serum. Mol Cell Biochem. 1981 Dec 4;41:59–66. doi: 10.1007/BF00225297. [DOI] [PubMed] [Google Scholar]
- Ida S., Hooks J. J., Siraganian R. P., Notkins A. L. Enhancement of IgE-mediated histamine release from human basophils by immune-specific lymphokines. Clin Exp Immunol. 1980 Aug;41(2):380–387. [PMC free article] [PubMed] [Google Scholar]
- Kaplan A. P., Haak-Frendscho M., Fauci A., Dinarello C., Halbert E. A histamine-releasing factor from activated human mononuclear cells. J Immunol. 1985 Sep;135(3):2027–2032. [PubMed] [Google Scholar]
- LICHTENSTEIN L. M., OSLER A. G. STUDIES ON THE MECHANISMS OF HYPERSENSITIVITY PHENOMENA. IX. HISTAMINE RELEASE FROM HUMAN LEUKOCYTES BY RAGWEED POLLEN ANTIGEN. J Exp Med. 1964 Oct 1;120:507–530. doi: 10.1084/jem.120.4.507. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lett-Brown M. A., Thueson D. O., Plank D. E., Langford M. P., Grant J. A. Histamine-releasing activity. IV. Molecular heterogeneity of the activity from stimulated human thoracic duct lymphocytes. Cell Immunol. 1984 Sep;87(2):434–444. doi: 10.1016/0008-8749(84)90012-1. [DOI] [PubMed] [Google Scholar]
- Lewis R. A., Austen K. F. The biologically active leukotrienes. Biosynthesis, metabolism, receptors, functions, and pharmacology. J Clin Invest. 1984 Apr;73(4):889–897. doi: 10.1172/JCI111312. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lopez A. F., Williamson D. J., Gamble J. R., Begley C. G., Harlan J. M., Klebanoff S. J., Waltersdorph A., Wong G., Clark S. C., Vadas M. A. Recombinant human granulocyte-macrophage colony-stimulating factor stimulates in vitro mature human neutrophil and eosinophil function, surface receptor expression, and survival. J Clin Invest. 1986 Nov;78(5):1220–1228. doi: 10.1172/JCI112705. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MacDonald S. M., Lichtenstein L. M., Proud D., Plaut M., Naclerio R. M., MacGlashan D. W., Kagey-Sobotka A. Studies of IgE-dependent histamine releasing factors: heterogeneity of IgE. J Immunol. 1987 Jul 15;139(2):506–512. [PubMed] [Google Scholar]
- Sedgwick J. D., Holt P. G., Turner K. J. Production of a histamine-releasing lymphokine by antigen- or mitogen-stimulated human peripheral T cells. Clin Exp Immunol. 1981 Aug;45(2):409–418. [PMC free article] [PubMed] [Google Scholar]
- Silberstein D. S., Owen W. F., Gasson J. C., DiPersio J. F., Golde D. W., Bina J. C., Soberman R., Austen K. F., David J. R. Enhancement of human eosinophil cytotoxicity and leukotriene synthesis by biosynthetic (recombinant) granulocyte-macrophage colony-stimulating factor. J Immunol. 1986 Nov 15;137(10):3290–3294. [PubMed] [Google Scholar]
- Siraganian R. P. An automated continuous-flow system for the extraction and fluorometric analysis of histamine. Anal Biochem. 1974 Feb;57(2):383–394. doi: 10.1016/0003-2697(74)90093-1. [DOI] [PubMed] [Google Scholar]
- Siraganian R. P., Hook W. A. Complement-induced histamine release from human basophils. II. Mechanism of the histamine release reaction. J Immunol. 1976 Mar;116(3):639–646. [PubMed] [Google Scholar]
- Siraganian R. P., Hook W. A. Mechanism of histamine release by formyl methionine-containing peptides. J Immunol. 1977 Dec;119(6):2078–2083. [PubMed] [Google Scholar]
- Subramanian N., Bray M. A. Interleukin 1 releases histamine from human basophils and mast cells in vitro. J Immunol. 1987 Jan 1;138(1):271–275. [PubMed] [Google Scholar]
- Weisbart R. H., Golde D. W., Clark S. C., Wong G. G., Gasson J. C. Human granulocyte-macrophage colony-stimulating factor is a neutrophil activator. 1985 Mar 28-Apr 3Nature. 314(6009):361–363. doi: 10.1038/314361a0. [DOI] [PubMed] [Google Scholar]
- Weisbart R. H., Kwan L., Golde D. W., Gasson J. C. Human GM-CSF primes neutrophils for enhanced oxidative metabolism in response to the major physiological chemoattractants. Blood. 1987 Jan;69(1):18–21. [PubMed] [Google Scholar]
- White M. V., Kaliner M. A. Neutrophils and mast cells. I. Human neutrophil-derived histamine-releasing activity. J Immunol. 1987 Sep 1;139(5):1624–1630. [PubMed] [Google Scholar]
- Wirthmueller U., De Weck A. L., Dahinden C. A. Platelet-activating factor production in human neutrophils by sequential stimulation with granulocyte-macrophage colony-stimulating factor and the chemotactic factors C5A or formyl-methionyl-leucyl-phenylalanine. J Immunol. 1989 May 1;142(9):3213–3218. [PubMed] [Google Scholar]