Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1989 Sep 1;170(3):665–677. doi: 10.1084/jem.170.3.665

Interaction of lymphokine-activated killer cells with susceptible targets does not induce second messenger generation and cytolytic granule exocytosis

PMCID: PMC2189428  PMID: 2769181

Abstract

CTL activation by specific targets leads to a rapid rise of inositol phosphates (InsPs) and of cytoplasmic-free Ca2+ concentration ([Ca2+]i). While these events are considered necessary to trigger granule secretion, Ca2+-independent cytolytic mechanisms have been recently proposed in addition or as an alternative to the classical Ca2+-dependent exocytosis model. We observed that lymphokine-activated killer (LAK) cells, obtained after stimulation with supraoptimal concentrations of IL-2 in short- or long-term cultures, kill susceptible targets in the absence of a [Ca2+]i rise and InsP3 formation. Moreover, LAK cell-mediated lysis was not associated with an increase in cytotoxic granule exocytosis, as evaluated by BLT-esterase release into the culture supernatant. Furthermore, using an antigen- specific CTL clone, which acquires LAK-like activity when cultured in medium containing high IL-2 doses, second messenger generation and cytolytic granule content secretion were not detected during lysis of unrelated target cells, while killing of specific targets triggered both these processes. These findings suggest that two lytic pathways may coexist in the same effector cells: a second messenger-dependent pathway involving degranulation, which is activated after TCR interaction with specific targets, and another pathway, independent of any known second messenger generation, responsible for unrelated target cell lysis.

Full Text

The Full Text of this article is available as a PDF (869.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anasetti C., Martin P. J., June C. H., Hellstrom K. E., Ledbetter J. A., Rabinovitch P. S., Morishita Y., Hellstrom I., Hansen J. A. Induction of calcium flux and enhancement of cytolytic activity in natural killer cells by cross-linking of the sheep erythrocyte binding protein (CD2) and the Fc-receptor (CD16). J Immunol. 1987 Sep 15;139(6):1772–1779. [PubMed] [Google Scholar]
  2. Berke G. Lymphocyte-mediated cytolysis. Effectors, lytic signals, and the mechanism whereby early membrane derangements result in target-cell death. Ann N Y Acad Sci. 1988;532:314–335. doi: 10.1111/j.1749-6632.1988.tb36349.x. [DOI] [PubMed] [Google Scholar]
  3. Berridge M. J., Irvine R. F. Inositol trisphosphate, a novel second messenger in cellular signal transduction. Nature. 1984 Nov 22;312(5992):315–321. doi: 10.1038/312315a0. [DOI] [PubMed] [Google Scholar]
  4. Cerundolo V., Zanovello P., McIntosh D., Fabbris R., Davies A. J., Collavo D. Temporary inhibition of Moloney-murine sarcoma virus (M-MSV) induced-tumours by adoptive transfer of ricin-treated T-lymphocytes. Br J Cancer. 1987 Apr;55(4):413–419. doi: 10.1038/bjc.1987.81. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Clark W. R. Perforin--a primary or auxiliary lytic mechanism? Immunol Today. 1988 Apr;9(4):101–104. doi: 10.1016/0167-5699(88)91277-7. [DOI] [PubMed] [Google Scholar]
  6. Clark W., Ostergaard H., Gorman K., Torbett B. Molecular mechanisms of CTL-mediated lysis: a cellular perspective. Immunol Rev. 1988 Mar;103:37–51. doi: 10.1111/j.1600-065x.1988.tb00748.x. [DOI] [PubMed] [Google Scholar]
  7. Coleman P. L., Green G. D. A coupled photometric assay for plasminogen activator. Methods Enzymol. 1981;80(Pt 100):408–414. doi: 10.1016/s0076-6879(81)80035-3. [DOI] [PubMed] [Google Scholar]
  8. Collavo D., Parenti A., Biasi G., Chieco-Bianchi L., Colombatti A. Secondary in vitro generation of cytolytic T-lymphocytes (CTL's) in the murine sarcoma virus system. Virus-specific CTL induction across the H-2 barrier. J Natl Cancer Inst. 1978 Sep;61(3):885–890. [PubMed] [Google Scholar]
  9. Di Virgilio F., Fasolato C., Steinberg T. H. Inhibitors of membrane transport system for organic anions block fura-2 excretion from PC12 and N2A cells. Biochem J. 1988 Dec 15;256(3):959–963. doi: 10.1042/bj2560959. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Fasolato C., Pandiella A., Meldolesi J., Pozzan T. Generation of inositol phosphates, cytosolic Ca2+, and ionic fluxes in PC12 cells treated with bradykinin. J Biol Chem. 1988 Nov 25;263(33):17350–17359. [PubMed] [Google Scholar]
  11. Grimm E. A., Mazumder A., Zhang H. Z., Rosenberg S. A. Lymphokine-activated killer cell phenomenon. Lysis of natural killer-resistant fresh solid tumor cells by interleukin 2-activated autologous human peripheral blood lymphocytes. J Exp Med. 1982 Jun 1;155(6):1823–1841. doi: 10.1084/jem.155.6.1823. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Harris D. T., Kozumbo W. J., Cerutti P., Cerottini J. C. Molecular mechanisms involved in T cell activation. I. Evidence for independent signal-transducing pathways in lymphokine production vs proliferation in cloned cytotoxic T lymphocytes. J Immunol. 1987 Jan 15;138(2):600–605. [PubMed] [Google Scholar]
  13. Henkart P. A. Mechanism of lymphocyte-mediated cytotoxicity. Annu Rev Immunol. 1985;3:31–58. doi: 10.1146/annurev.iy.03.040185.000335. [DOI] [PubMed] [Google Scholar]
  14. Imboden J. B., Stobo J. D. Transmembrane signalling by the T cell antigen receptor. Perturbation of the T3-antigen receptor complex generates inositol phosphates and releases calcium ions from intracellular stores. J Exp Med. 1985 Mar 1;161(3):446–456. doi: 10.1084/jem.161.3.446. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kupfer A., Dennert G., Singer S. J. The reorientation of the Golgi apparatus and the microtubule-organizing center in the cytotoxic effector cell is a prerequisite in the lysis of bound target cells. J Mol Cell Immunol. 1985;2(1):37–49. [PubMed] [Google Scholar]
  16. Lancki D. W., Weiss A., Fitch F. W. Requirements for triggering of lysis by cytolytic T lymphocyte clones. J Immunol. 1987 Jun 1;138(11):3646–3653. [PubMed] [Google Scholar]
  17. Liu C. C., Steffen M., King F., Young J. D. Identification, isolation, and characterization of a novel cytotoxin in murine cytolytic lymphocytes. Cell. 1987 Nov 6;51(3):393–403. doi: 10.1016/0092-8674(87)90635-0. [DOI] [PubMed] [Google Scholar]
  18. MacDermott R. P., Schmidt R. E., Caulfield J. P., Hein A., Bartley G. T., Ritz J., Schlossman S. F., Austen K. F., Stevens R. L. Proteoglycans in cell-mediated cytotoxicity. Identification, localization, and exocytosis of a chondroitin sulfate proteoglycan from human cloned natural killer cells during target cell lysis. J Exp Med. 1985 Dec 1;162(6):1771–1787. doi: 10.1084/jem.162.6.1771. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Masson D., Tschopp J. A family of serine esterases in lytic granules of cytolytic T lymphocytes. Cell. 1987 Jun 5;49(5):679–685. doi: 10.1016/0092-8674(87)90544-7. [DOI] [PubMed] [Google Scholar]
  20. Meldolesi J., Pozzan T. Pathways of Ca2+ influx at the plasma membrane: voltage-, receptor-, and second messenger-operated channels. Exp Cell Res. 1987 Aug;171(2):271–283. doi: 10.1016/0014-4827(87)90161-3. [DOI] [PubMed] [Google Scholar]
  21. Nishizuka Y. The role of protein kinase C in cell surface signal transduction and tumour promotion. Nature. 1984 Apr 19;308(5961):693–698. doi: 10.1038/308693a0. [DOI] [PubMed] [Google Scholar]
  22. Ostergaard H., Clark W. R. The role of Ca2+ in activation of mature cytotoxic T lymphocytes for lysis. J Immunol. 1987 Dec 1;139(11):3573–3579. [PubMed] [Google Scholar]
  23. Pasternack M. S., Eisen H. N. A novel serine esterase expressed by cytotoxic T lymphocytes. 1985 Apr 25-May 1Nature. 314(6013):743–745. doi: 10.1038/314743a0. [DOI] [PubMed] [Google Scholar]
  24. Podack E. R., Konigsberg P. J. Cytolytic T cell granules. Isolation, structural, biochemical, and functional characterization. J Exp Med. 1984 Sep 1;160(3):695–710. doi: 10.1084/jem.160.3.695. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Poenie M., Tsien R. Y., Schmitt-Verhulst A. M. Sequential activation and lethal hit measured by [Ca2+]i in individual cytolytic T cells and targets. EMBO J. 1987 Aug;6(8):2223–2232. doi: 10.1002/j.1460-2075.1987.tb02494.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Reynolds C. W., Reichardt D., Henkart M., Millard P., Henkart P. Inhibition of NK and ADCC activity by antibodies against purified cytoplasmic granules from rat LGL tumors. J Leukoc Biol. 1987 Dec;42(6):642–652. doi: 10.1002/jlb.42.6.642. [DOI] [PubMed] [Google Scholar]
  27. Ronchese F., Collavo D., Zanovello P., Cerundolo V., Biasi G. Reversibility of lymphokine-induced NK-like activity in virus-specific cytotoxic T-lymphocyte clones. Immunology. 1985 Feb;54(2):265–274. [PMC free article] [PubMed] [Google Scholar]
  28. Rosenstein M., Yron I., Kaufmann Y., Rosenberg S. A. Lymphokine-activated killer cells: lysis of fresh syngeneic natural killer-resistant murine tumor cells by lymphocytes cultured in interleukin 2. Cancer Res. 1984 May;44(5):1946–1953. [PubMed] [Google Scholar]
  29. Takayama H., Sitkovsky M. V. Antigen receptor-regulated exocytosis in cytotoxic T lymphocytes. J Exp Med. 1987 Sep 1;166(3):725–743. doi: 10.1084/jem.166.3.725. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Takayama H., Trenn G., Humphrey W., Jr, Bluestone J. A., Henkart P. A., Sitkovsky M. V. Antigen receptor-triggered secretion of a trypsin-type esterase from cytotoxic T lymphocytes. J Immunol. 1987 Jan 15;138(2):566–569. [PubMed] [Google Scholar]
  31. Tirosh R., Berke G. T-Lymphocyte-mediated cytolysis as an excitatory process of the target. I. Evidence that the target cell may be the site of Ca2+ action. Cell Immunol. 1985 Oct 1;95(1):113–123. doi: 10.1016/0008-8749(85)90300-4. [DOI] [PubMed] [Google Scholar]
  32. Weiss A., Imboden J. B. Cell surface molecules and early events involved in human T lymphocyte activation. Adv Immunol. 1987;41:1–38. doi: 10.1016/s0065-2776(08)60029-2. [DOI] [PubMed] [Google Scholar]
  33. Weiss A., Imboden J. B. Cell surface molecules and early events involved in human T lymphocyte activation. Adv Immunol. 1987;41:1–38. doi: 10.1016/s0065-2776(08)60029-2. [DOI] [PubMed] [Google Scholar]
  34. Windebank K. P., Abraham R. T., Powis G., Olsen R. A., Barna T. J., Leibson P. J. Signal transduction during human natural killer cell activation: inositol phosphate generation and regulation by cyclic AMP. J Immunol. 1988 Dec 1;141(11):3951–3957. [PubMed] [Google Scholar]
  35. Young J. D., Leong L. G., Liu C. C., Damiano A., Cohn Z. A. Extracellular release of lymphocyte cytolytic pore-forming protein (perforin) after ionophore stimulation. Proc Natl Acad Sci U S A. 1986 Aug;83(15):5668–5672. doi: 10.1073/pnas.83.15.5668. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES