Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1989 Sep 1;170(3):887–900. doi: 10.1084/jem.170.3.887

Antibody inhibits defined stages in the pathogenesis of reovirus serotype 3 infection of the central nervous system

PMCID: PMC2189445  PMID: 2549167

Abstract

The mammalian reoviruses provide a model for studying specific aspects of the immunopathogenesis of viral infection. We have used two serotype 3 reoviruses to define stages in the pathogenesis of central nervous system (CNS) infection at which a mAb specific for the reoviral cell attachment protein sigma 1 (sigma 1mAbG5) acts to protect mice against lethal disease. sigma 1mAbG5 administered either before or at the time of footpad inoculation with reovirus T3D prevented entry of T3D into the CNS. sigma 1mAbG5 also inhibited the spread of reovirus T3C9 from the gastrointestinal tract to the CNS after peroral inoculation with T3C9. These effects occurred in the absence of a significant effect of sigma 1mAbG5 on primary replication in skeletal muscle (T3D) or the gastrointestinal tract (T3C9). sigma 1mAbG5 administered after T3D had reached the spinal cord inhibited subsequent spread of infectious virus from spinal cord to brain. Even after direct intracerebral inoculation of T3D, sigma 1mAbG5 prevented both growth in the brain and spread of infectious virus from brain to eye, spinal cord, and muscle. Treatment with sigma 1mAbG5 after intracerebral inoculation with T3D prevented neuronal necrosis and resulted in a delayed and topographically restricted inflammatory response. We detected no antibody-resistant T3D variants in vivo after treatment with sigma 1mAbG5. We conclude that systemic IgG does not play a significant role at the primary site of infection with reoviruses, while it clearly acts to prevent infection of the CNS and extension of infection with the CNS. Further study will be directed to defining what components of the immune system do act at primary sites of infection, and to defining the mechanisms by which antibody acts at defined stages in pathogenesis.

Full Text

The Full Text of this article is available as a PDF (1.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BODIAN D. Experimental studies on passive immunization against poliomyelitis. III. Passive-active immunization and pathogenesis after virus feeding in chimpanzees. Am J Hyg. 1953 Jul;58(1):81–100. doi: 10.1093/oxfordjournals.aje.a119594. [DOI] [PubMed] [Google Scholar]
  2. BODIAN D., NATHANSON N. Inhibitory effects of passive antibody on virulent poliovirus excretion and on immune response in chimpanzees. Bull Johns Hopkins Hosp. 1960 Sep;107:143–162. [PubMed] [Google Scholar]
  3. Bassel-Duby R., Jayasuriya A., Chatterjee D., Sonenberg N., Maizel J. V., Jr, Fields B. N. Sequence of reovirus haemagglutinin predicts a coiled-coil structure. 1985 May 30-Jun 5Nature. 315(6018):421–423. doi: 10.1038/315421a0. [DOI] [PubMed] [Google Scholar]
  4. Bodkin D. K., Fields B. N. Growth and survival of reovirus in intestinal tissue: role of the L2 and S1 genes. J Virol. 1989 Mar;63(3):1188–1193. doi: 10.1128/jvi.63.3.1188-1193.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Buchmeier M. J., Lewicki H. A., Talbot P. J., Knobler R. L. Murine hepatitis virus-4 (strain JHM)-induced neurologic disease is modulated in vivo by monoclonal antibody. Virology. 1984 Jan 30;132(2):261–270. doi: 10.1016/0042-6822(84)90033-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Burstin S. J., Spriggs D. R., Fields B. N. Evidence for functional domains on the reovirus type 3 hemagglutinin. Virology. 1982 Feb;117(1):146–155. doi: 10.1016/0042-6822(82)90514-1. [DOI] [PubMed] [Google Scholar]
  7. Davis W. B., Taylor J. A., Oakes J. E. Ocular infection with herpes simplex virus type 1: prevention of acute herpetic encephalitis by systemic administration of virus-specific antibody. J Infect Dis. 1979 Oct;140(4):534–540. doi: 10.1093/infdis/140.4.534. [DOI] [PubMed] [Google Scholar]
  8. Fabian R. H., Petroff G. Intraneuronal IgG in the central nervous system: uptake by retrograde axonal transport. Neurology. 1987 Nov;37(11):1780–1784. doi: 10.1212/wnl.37.11.1780. [DOI] [PubMed] [Google Scholar]
  9. Fujinami R. S., Oldstone M. B. Antiviral antibody reacting on the plasma membrane alters measles virus expression inside the cell. Nature. 1979 Jun 7;279(5713):529–530. doi: 10.1038/279529a0. [DOI] [PubMed] [Google Scholar]
  10. Gollins S. W., Porterfield J. S. A new mechanism for the neutralization of enveloped viruses by antiviral antibody. Nature. 1986 May 15;321(6067):244–246. doi: 10.1038/321244a0. [DOI] [PubMed] [Google Scholar]
  11. Hrdy D. B., Rosen L., Fields B. N. Polymorphism of the migration of double-stranded RNA genome segments of reovirus isolates from humans, cattle, and mice. J Virol. 1979 Jul;31(1):104–111. doi: 10.1128/jvi.31.1.104-111.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hrdy D. B., Rubin D. H., Fields B. N. Molecular basis of reovirus neurovirulence: role of the M2 gene in avirulence. Proc Natl Acad Sci U S A. 1982 Feb;79(4):1298–1302. doi: 10.1073/pnas.79.4.1298. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Keroack M., Fields B. N. Viral shedding and transmission between hosts determined by reovirus L2 gene. Science. 1986 Jun 27;232(4758):1635–1638. doi: 10.1126/science.3012780. [DOI] [PubMed] [Google Scholar]
  14. LIU O. C., CARTER J. E., DESANCTIS A. N., GEATING J. A., HAMPIL B. A study of the effect of antiserum on poliovirus infection induced by the intraspinal inoculation of rhesus monkeys. J Immunol. 1958 Feb;80(2):106–113. [PubMed] [Google Scholar]
  15. Löve A., Rydbeck R., Utter G., Orvell C., Kristensson K., Norrby E. Monoclonal antibodies against the fusion protein are protective in necrotizing mumps meningoencephalitis. J Virol. 1986 Apr;58(1):220–222. doi: 10.1128/jvi.58.1.220-222.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Margolis G., Kilham L., Gonatas N. K. Reovirus type 3 encephalitis: observations of virus-cell interactions in neural tissues. I. Light microscopy studies. Lab Invest. 1971 Feb;24(2):91–100. [PubMed] [Google Scholar]
  17. McKendall R. R. IgG-mediated viral clearance in experimental infection with herpes simplex virus type 1: role for neutralization and Fc-dependent functions but not C' cytolysis and C5 chemotaxis. J Infect Dis. 1985 Mar;151(3):464–470. doi: 10.1093/infdis/151.3.464. [DOI] [PubMed] [Google Scholar]
  18. NATHANSON N., BODIAN D. Experimental poliomyelitis following intramuscular virus injection. III. The effect of passive antibody on paralysis and viremia. Bull Johns Hopkins Hosp. 1962 Oct;111:198–220. [PubMed] [Google Scholar]
  19. Raine C. S., Fields B. N. Reovirus type 3 encephalitis--a virologic and ultrastructural study. J Neuropathol Exp Neurol. 1973 Jan;32(1):19–33. doi: 10.1097/00005072-197301000-00002. [DOI] [PubMed] [Google Scholar]
  20. Rammohan K. W., McFarland H. F., McFarlin D. E. Induction of subacute murine measles encephalitis by monoclonal antibody to virus haemagglutinin. Nature. 1981 Apr 16;290(5807):588–589. doi: 10.1038/290588a0. [DOI] [PubMed] [Google Scholar]
  21. Rubin D. H., Fields B. N. Molecular basis of reovirus virulence. Role of the M2 gene. J Exp Med. 1980 Oct 1;152(4):853–868. doi: 10.1084/jem.152.4.853. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. SABIN A. B. Behavior of chimpanzee avirulent poliomyelitis viruses in experimentally infected human volunteers. Am J Med Sci. 1955 Jul;230(1):1–8. doi: 10.1097/00000441-195507000-00001. [DOI] [PubMed] [Google Scholar]
  23. Salk J., Salk D. Control of influenza and poliomyelitis with killed virus vaccines. Science. 1977 Mar 4;195(4281):834–847. doi: 10.1126/science.320661. [DOI] [PubMed] [Google Scholar]
  24. Sarkar G., Pelletier J., Bassel-Duby R., Jayasuriya A., Fields B. N., Sonenberg N. Identification of a new polypeptide coded by reovirus gene S1. J Virol. 1985 Jun;54(3):720–725. doi: 10.1128/jvi.54.3.720-725.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Spriggs D. R., Bronson R. T., Fields B. N. Hemagglutinin variants of reovirus type 3 have altered central nervous system tropism. Science. 1983 Apr 29;220(4596):505–507. doi: 10.1126/science.6301010. [DOI] [PubMed] [Google Scholar]
  26. Stanley J., Cooper S. J., Griffin D. E. Monoclonal antibody cure and prophylaxis of lethal Sindbis virus encephalitis in mice. J Virol. 1986 Apr;58(1):107–115. doi: 10.1128/jvi.58.1.107-115.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Tyler K. L., Bronson R. T., Byers K. B., Fields B. Molecular basis of viral neurotropism: experimental reovirus infection. Neurology. 1985 Jan;35(1):88–92. doi: 10.1212/wnl.35.1.88. [DOI] [PubMed] [Google Scholar]
  28. Tyler K. L., McPhee D. A., Fields B. N. Distinct pathways of viral spread in the host determined by reovirus S1 gene segment. Science. 1986 Aug 15;233(4765):770–774. doi: 10.1126/science.3016895. [DOI] [PubMed] [Google Scholar]
  29. Verdin E. M., Lynn S. P., Fields B. N., Maratos-Flier E. Uptake of reovirus serotype 1 by the lungs from the bloodstream is mediated by the viral hemagglutinin. J Virol. 1988 Feb;62(2):545–551. doi: 10.1128/jvi.62.2.545-551.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Virgin H. W., 4th, Bassel-Duby R., Fields B. N., Tyler K. L. Antibody protects against lethal infection with the neurally spreading reovirus type 3 (Dearing). J Virol. 1988 Dec;62(12):4594–4604. doi: 10.1128/jvi.62.12.4594-4604.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Weiner H. L., Powers M. L., Fields B. N. Absolute linkage of virulence and central nervous system cell tropism of reoviruses to viral hemagglutinin. J Infect Dis. 1980 May;141(5):609–616. doi: 10.1093/infdis/141.5.609. [DOI] [PubMed] [Google Scholar]
  32. Wolinsky J. S., Waxham M. N., Server A. C. Protective effects of glycoprotein-specific monoclonal antibodies on the course of experimental mumps virus meningoencephalitis. J Virol. 1985 Mar;53(3):727–734. doi: 10.1128/jvi.53.3.727-734.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES