Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1989 Sep 1;170(3):933–946. doi: 10.1084/jem.170.3.933

Induction of target cell DNA release by the cytotoxic T lymphocyte granule protease granzyme A

PMCID: PMC2189452  PMID: 2788710

Abstract

The rapid breakdown of target cell DNA during CTL-mediated lysis has been difficult to explain by the granule exocytosis model of cytotoxicity. The involvement of CTL granule proteases in this process was strongly suggested by experiments in which CTL were pretreated with the serine protease inhibitor PMSF, in combination with agents that raise the pH of acidic intracellular compartments. While PMSF pretreatment alone had little effect on target lysis or DNA breakdown, the combination of PMSF and NH4Cl or monensin profoundly reduced target cell DNA release, while little effect was observed on target lysis, as measured by 51Cr release. CTL granule extracts cause release of 125I- DNA from detergent-permeabilized cells. This nuclear DNA-releasing (NDR) activity is inhibited by serine esterase inhibitors that also inhibit the granule BLT-esterase activity, and is specifically immunoabsorbed by antibodies to the CTL granule protease granzyme A. The NDR activity comigrates with BLT-esterase activity during subcellular fractionation, solubilization, gel filtration, and aprotinin-Sepharose affinity chromatography. SDS-PAGE analysis of the affinity-purified product indicates a molecular mass of 60,000 daltons under non-reducing conditions, which moves to 30,000 daltons upon reduction, consistent with previously reported behavior of granzyme A. When the purified material was reduced and alkylated, both esterase and NDR activities comigrated at 30,000 daltons upon gel filtration. Although fully lytic concentrations of purified LGL granule cytolysin alone failed to induce target cell DNA release, a combination of purified granzyme A and the cytolysin induces substantial DNA release.

Full Text

The Full Text of this article is available as a PDF (880.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allbritton N. L., Verret C. R., Wolley R. C., Eisen H. N. Calcium ion concentrations and DNA fragmentation in target cell destruction by murine cloned cytotoxic T lymphocytes. J Exp Med. 1988 Feb 1;167(2):514–527. doi: 10.1084/jem.167.2.514. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Allbritton N. L., Verret C. R., Wolley R. C., Eisen H. N. Calcium ion concentrations and DNA fragmentation in target cell destruction by murine cloned cytotoxic T lymphocytes. J Exp Med. 1988 Feb 1;167(2):514–527. doi: 10.1084/jem.167.2.514. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Chang T. W., Eisen H. N. Effects of N alpha-tosyl-L-lysyl-chloromethylketone on the activity of cytotoxic T lymphocytes. J Immunol. 1980 Mar;124(3):1028–1033. [PubMed] [Google Scholar]
  4. Cohen J. J., Duke R. C., Chervenak R., Sellins K. S., Olson L. K. DNA fragmentation in targets of CTL: an example of programmed cell death in the immune system. Adv Exp Med Biol. 1985;184:493–508. doi: 10.1007/978-1-4684-8326-0_32. [DOI] [PubMed] [Google Scholar]
  5. Cohen J. J., Duke R. C. Glucocorticoid activation of a calcium-dependent endonuclease in thymocyte nuclei leads to cell death. J Immunol. 1984 Jan;132(1):38–42. [PubMed] [Google Scholar]
  6. Duke R. C., Chervenak R., Cohen J. J. Endogenous endonuclease-induced DNA fragmentation: an early event in cell-mediated cytolysis. Proc Natl Acad Sci U S A. 1983 Oct;80(20):6361–6365. doi: 10.1073/pnas.80.20.6361. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Duke R. C., Sellins K. S., Cohen J. J. Cytotoxic lymphocyte-derived lytic granules do not induce DNA fragmentation in target cells. J Immunol. 1988 Oct 1;141(7):2191–2194. [PubMed] [Google Scholar]
  8. Ferluga J., Asherson G. L., Becker E. L. The effect of organophosphorus inhibitors, p-nitrophenol and cytochalasin B on cytotoxic killing of tumour cells by immune spleen cells, and the effect of shaking. Immunology. 1972 Oct;23(4):577–590. [PMC free article] [PubMed] [Google Scholar]
  9. Golstein P. Cytolytic T-cell melodrama. Nature. 1987 May 7;327(6117):12–12. doi: 10.1038/327012a0. [DOI] [PubMed] [Google Scholar]
  10. Gromkowski S. H., Brown T. C., Masson D., Tschopp J. Lack of DNA degradation in target cells lysed by granules derived from cytolytic T lymphocytes. J Immunol. 1988 Aug 1;141(3):774–778. [PubMed] [Google Scholar]
  11. Hameed A., Olsen K. J., Lee M. K., Lichtenheld M. G., Podack E. R. Cytolysis by Ca-permeable transmembrane channels. Pore formation causes extensive DNA degradation and cell lysis. J Exp Med. 1989 Mar 1;169(3):765–777. doi: 10.1084/jem.169.3.765. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Henkart P. A., Berrebi G. A., Takayama H., Munger W. E., Sitkovsky M. V. Biochemical and functional properties of serine esterases in acidic cytoplasmic granules of cytotoxic T lymphocytes. J Immunol. 1987 Oct 1;139(7):2398–2405. [PubMed] [Google Scholar]
  13. Henkart P. A. Mechanism of lymphocyte-mediated cytotoxicity. Annu Rev Immunol. 1985;3:31–58. doi: 10.1146/annurev.iy.03.040185.000335. [DOI] [PubMed] [Google Scholar]
  14. Henkart P. A., Millard P. J., Reynolds C. W., Henkart M. P. Cytolytic activity of purified cytoplasmic granules from cytotoxic rat large granular lymphocyte tumors. J Exp Med. 1984 Jul 1;160(1):75–93. doi: 10.1084/jem.160.1.75. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Masson D., Nabholz M., Estrade C., Tschopp J. Granules of cytolytic T-lymphocytes contain two serine esterases. EMBO J. 1986 Jul;5(7):1595–1600. doi: 10.1002/j.1460-2075.1986.tb04401.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Masson D., Tschopp J. A family of serine esterases in lytic granules of cytolytic T lymphocytes. Cell. 1987 Jun 5;49(5):679–685. doi: 10.1016/0092-8674(87)90544-7. [DOI] [PubMed] [Google Scholar]
  17. Millard P. J., Henkart M. P., Reynolds C. W., Henkart P. A. Purification and properties of cytoplasmic granules from cytotoxic rat LGL tumors. J Immunol. 1984 Jun;132(6):3197–3204. [PubMed] [Google Scholar]
  18. Munger W. E., Berrebi G. A., Henkart P. A. Possible involvement of CTL granule proteases in target cell DNA breakdown. Immunol Rev. 1988 Mar;103:99–109. doi: 10.1111/j.1600-065x.1988.tb00752.x. [DOI] [PubMed] [Google Scholar]
  19. Pasternack M. S., Eisen H. N. A novel serine esterase expressed by cytotoxic T lymphocytes. 1985 Apr 25-May 1Nature. 314(6013):743–745. doi: 10.1038/314743a0. [DOI] [PubMed] [Google Scholar]
  20. Pasternack M. S., Sitkovsky M. V., Eisen H. N. The site of action of N-alpha-tosyl-L-lysyl-chloromethyl-ketone (TLCK) on cloned cytotoxic T lymphocytes. J Immunol. 1983 Nov;131(5):2477–2483. [PubMed] [Google Scholar]
  21. Pasternack M. S., Verret C. R., Liu M. A., Eisen H. N. Serine esterase in cytolytic T lymphocytes. Nature. 1986 Aug 21;322(6081):740–743. doi: 10.1038/322740a0. [DOI] [PubMed] [Google Scholar]
  22. Podack E. R. Molecular mechanisms of cytolysis by complement and by cytolytic lymphocytes. J Cell Biochem. 1986;30(2):133–170. doi: 10.1002/jcb.240300205. [DOI] [PubMed] [Google Scholar]
  23. Podack E. R. Molecular mechanisms of cytolysis by complement and by cytolytic lymphocytes. J Cell Biochem. 1986;30(2):133–170. doi: 10.1002/jcb.240300205. [DOI] [PubMed] [Google Scholar]
  24. Redelman D., Hudig D. The mechanism of cell-mediated cytotoxicity. I. Killing by murine cytotoxic T lymphocytes requires cell surface thiols and activated proteases. J Immunol. 1980 Feb;124(2):870–878. [PubMed] [Google Scholar]
  25. Russell J. H., Dobos C. B. Mechanisms of immune lysis. II. CTL-induced nuclear disintegration of the target begins within minutes of cell contact. J Immunol. 1980 Sep;125(3):1256–1261. [PubMed] [Google Scholar]
  26. Russell J. H. Internal disintegration model of cytotoxic lymphocyte-induced target damage. Immunol Rev. 1983;72:97–118. doi: 10.1111/j.1600-065x.1983.tb01074.x. [DOI] [PubMed] [Google Scholar]
  27. Simon M. M., Hoschützky H., Fruth U., Simon H. G., Kramer M. D. Purification and characterization of a T cell specific serine proteinase (TSP-1) from cloned cytolytic T lymphocytes. EMBO J. 1986 Dec 1;5(12):3267–3274. doi: 10.1002/j.1460-2075.1986.tb04638.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Skalka M., Matyásová J., Cejková M. Dna in chromatin of irradiated lymphoid tissues degrades in vivo into regular fragments. FEBS Lett. 1976 Dec 31;72(2):271–274. doi: 10.1016/0014-5793(76)80984-2. [DOI] [PubMed] [Google Scholar]
  29. Smith C. A., Williams G. T., Kingston R., Jenkinson E. J., Owen J. J. Antibodies to CD3/T-cell receptor complex induce death by apoptosis in immature T cells in thymic cultures. Nature. 1989 Jan 12;337(6203):181–184. doi: 10.1038/337181a0. [DOI] [PubMed] [Google Scholar]
  30. Tschopp J., Jongeneel C. V. Cytotoxic T lymphocyte mediated cytolysis. Biochemistry. 1988 Apr 19;27(8):2641–2646. doi: 10.1021/bi00408a001. [DOI] [PubMed] [Google Scholar]
  31. Wyllie A. H. Glucocorticoid-induced thymocyte apoptosis is associated with endogenous endonuclease activation. Nature. 1980 Apr 10;284(5756):555–556. doi: 10.1038/284555a0. [DOI] [PubMed] [Google Scholar]
  32. Young J. D., Cohn Z. A. Role of granule proteins in lymphocyte-mediated killing. J Cell Biochem. 1986;32(2):151–167. doi: 10.1002/jcb.240320207. [DOI] [PubMed] [Google Scholar]
  33. Young J. D., Leong L. G., Liu C. C., Damiano A., Wall D. A., Cohn Z. A. Isolation and characterization of a serine esterase from cytolytic T cell granules. Cell. 1986 Oct 24;47(2):183–194. doi: 10.1016/0092-8674(86)90441-1. [DOI] [PubMed] [Google Scholar]
  34. van der Graaf F., Tans G., Bouma B. N., Griffin J. H. Isolation and functional properties of the heavy and light chains of human plasma kallikrein. J Biol Chem. 1982 Dec 10;257(23):14300–14305. [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES