Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1989 Oct 1;170(4):1285–1301. doi: 10.1084/jem.170.4.1285

Characterization of sheep afferent lymph dendritic cells and their role in antigen carriage

PMCID: PMC2189470  PMID: 2794860

Abstract

We have ablated peripheral lymph nodes in sheep and subsequently cannulated the pseudo-afferent lymphatic vessel that arises as a consequence of afferent lymphatic vessels reanastomosing with the former efferent duct. This technique allows the collection of lymph with a cellular composition that resembles true afferent fluid, and in particular, containing 1-10% dendritic cells. A 16-h collection of this lymph may contain between 10(6) and 10(7) dendritic cells. This dendritic cell population may be enriched to greater than 75% by a single-density gradient centrifugation step. We have generated a mAb that recognizes sheep CD1. This monoclonal not only reacts with afferent dendritic cells, but with dendritic cells in the skin and paracortical T cell areas of lymph nodes. The expression of CD1 suggests afferent dendritic cells are related to skin Langerhans' cells and other dendritic cells that act as accessory cells for T cell responses. Consistent with this is the high level of expression by dendritic cells of molecules involved in antigen recognition by T cells, including MHC class I and class II. Afferent dendritic cells express high levels of the cellular adhesion molecule LFA-3, and at the same time express a ligand for this molecule, namely CD2. The accessory functions of afferent dendritic cells resemble those displayed by mature Langerhans' cells and by lymph node interdigitating cells. These include clustering with resting T cells and stimulating their proliferation in a primary response to antigen. Afferent dendritic cells are capable of acquiring soluble protein antigen in vivo or in vitro and presenting the material directly to autologous T cells in an antigen-specific manner. We conclude that afferent dendritic cells represent a lymph-borne Langerhans' cell involved in antigen carriage to the lymph node.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Austyn J. M. Lymphoid dendritic cells. Immunology. 1987 Oct;62(2):161–170. [PMC free article] [PubMed] [Google Scholar]
  2. BOYUM A. SEPARATION OF WHITE BLOOD CELLS. Nature. 1964 Nov 21;204:793–794. doi: 10.1038/204793a0. [DOI] [PubMed] [Google Scholar]
  3. Bujdoso R., Young P., Harkiss G. D., McConnell I. Antigen presentation in the sheep: generation of antigen-specific T-cell lines. Immunology. 1989 Apr;66(4):559–564. [PMC free article] [PubMed] [Google Scholar]
  4. Drexhage H. A., Mullink H., de Groot J., Clarke J., Balfour B. M. A study of cells present in peripheral lymph of pigs with special reference to a type of cell resembling the Langerhans cell. Cell Tissue Res. 1979 Nov;202(3):407–430. doi: 10.1007/BF00220434. [DOI] [PubMed] [Google Scholar]
  5. Emery D. L., MacHugh N. D., Ellis J. A. The properties and functional activity of non-lymphoid cells from bovine afferent (peripheral) lymph. Immunology. 1987 Oct;62(2):177–183. [PMC free article] [PubMed] [Google Scholar]
  6. Ferguson M. A., Williams A. F. Cell-surface anchoring of proteins via glycosyl-phosphatidylinositol structures. Annu Rev Biochem. 1988;57:285–320. doi: 10.1146/annurev.bi.57.070188.001441. [DOI] [PubMed] [Google Scholar]
  7. Galfre G., Howe S. C., Milstein C., Butcher G. W., Howard J. C. Antibodies to major histocompatibility antigens produced by hybrid cell lines. Nature. 1977 Apr 7;266(5602):550–552. doi: 10.1038/266550a0. [DOI] [PubMed] [Google Scholar]
  8. Gogolin-Ewens K. J., Mackay C. R., Mercer W. R., Brandon M. R. Sheep lymphocyte antigens (OLA). I. Major histocompatibility complex class I molecules. Immunology. 1985 Dec;56(4):717–723. [PMC free article] [PubMed] [Google Scholar]
  9. Hein W. R., McClure S. J., Miyasaka M. Cellular composition of peripheral lymph and skin of sheep defined by monoclonal antibodies. Int Arch Allergy Appl Immunol. 1987;84(3):241–246. doi: 10.1159/000234430. [DOI] [PubMed] [Google Scholar]
  10. Hoefsmit E. C., Duijvestijn A. M., Kamperdijk E. W. Relation between langerhans cells, veiled cells, and interdigitating cells. Immunobiology. 1982 Apr;161(3-4):255–265. doi: 10.1016/S0171-2985(82)80081-8. [DOI] [PubMed] [Google Scholar]
  11. Hopkins J., Dutia B. M., Bujdoso R., McConnell I. In vivo modulation of CD1 and MHC class II expression by sheep afferent lymph dendritic cells. Comparison of primary and secondary immune responses. J Exp Med. 1989 Oct 1;170(4):1303–1318. doi: 10.1084/jem.170.4.1303. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hopkins J., Dutia B. M., McConnell I. Monoclonal antibodies to sheep lymphocytes. I. Identification of MHC class II molecules on lymphoid tissue and changes in the level of class II expression on lymph-borne cells following antigen stimulation in vivo. Immunology. 1986 Nov;59(3):433–438. [PMC free article] [PubMed] [Google Scholar]
  13. Hünig T. The cell surface molecule recognized by the erythrocyte receptor of T lymphocytes. Identification and partial characterization using a monoclonal antibody. J Exp Med. 1985 Sep 1;162(3):890–901. doi: 10.1084/jem.162.3.890. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Inaba K., Steinman R. M. Resting and sensitized T lymphocytes exhibit distinct stimulatory (antigen-presenting cell) requirements for growth and lymphokine release. J Exp Med. 1984 Dec 1;160(6):1717–1735. doi: 10.1084/jem.160.6.1717. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Inaba K., Young J. W., Steinman R. M. Direct activation of CD8+ cytotoxic T lymphocytes by dendritic cells. J Exp Med. 1987 Jul 1;166(1):182–194. doi: 10.1084/jem.166.1.182. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Julius M. H., Simpson E., Herzenberg L. A. A rapid method for the isolation of functional thymus-derived murine lymphocytes. Eur J Immunol. 1973 Oct;3(10):645–649. doi: 10.1002/eji.1830031011. [DOI] [PubMed] [Google Scholar]
  17. Kelly R. H., Balfour B. M., Armstrong J. A., Griffiths S. Functional anatomy of lymph nodes. II. Peripheral lymph-borne mononuclear cells. Anat Rec. 1978 Jan;190(1):5–21. doi: 10.1002/ar.1091900103. [DOI] [PubMed] [Google Scholar]
  18. Kennedy P. G., Narayan O., Ghotbi Z., Hopkins J., Gendelman H. E., Clements J. E. Persistent expression of Ia antigen and viral genome in visna-maedi virus-induced inflammatory cells. Possible role of lentivirus-induced interferon. J Exp Med. 1985 Dec 1;162(6):1970–1982. doi: 10.1084/jem.162.6.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Knight S. C., Balfour B. M., O'Brien J., Buttifant L., Sumerska T., Clarke J. Role of veiled cells in lymphocyte activation. Eur J Immunol. 1982 Dec;12(12):1057–1060. doi: 10.1002/eji.1830121214. [DOI] [PubMed] [Google Scholar]
  20. Knight S. C., Farrant J., Bryant A., Edwards A. J., Burman S., Lever A., Clarke J., Webster A. D. Non-adherent, low-density cells from human peripheral blood contain dendritic cells and monocytes, both with veiled morphology. Immunology. 1986 Apr;57(4):595–603. [PMC free article] [PubMed] [Google Scholar]
  21. Knight S. C. Veiled cells--"dendritic cells" of the peripheral lymph. Immunobiology. 1984 Dec;168(3-5):349–361. doi: 10.1016/S0171-2985(84)80122-9. [DOI] [PubMed] [Google Scholar]
  22. Kraal G., Breel M., Janse M., Bruin G. Langerhans' cells, veiled cells, and interdigitating cells in the mouse recognized by a monoclonal antibody. J Exp Med. 1986 Apr 1;163(4):981–997. doi: 10.1084/jem.163.4.981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  24. Lanzavecchia A. Antigen-specific interaction between T and B cells. Nature. 1985 Apr 11;314(6011):537–539. doi: 10.1038/314537a0. [DOI] [PubMed] [Google Scholar]
  25. Lanzavecchia A., Roosnek E., Gregory T., Berman P., Abrignani S. T cells can present antigens such as HIV gp120 targeted to their own surface molecules. Nature. 1988 Aug 11;334(6182):530–532. doi: 10.1038/334530a0. [DOI] [PubMed] [Google Scholar]
  26. Lens J. W., Drexhage H. A., Benson W., Balfour B. M. A study of cells present in lymph draining from a contact allergic reaction in pigs sensitized to DNFB. Immunology. 1983 Jul;49(3):415–422. [PMC free article] [PubMed] [Google Scholar]
  27. MacHugh N. D., Bensaid A., Davis W. C., Howard C. J., Parsons K. R., Jones B., Kaushal A. Characterization of a bovine thymic differentiation antigen analogous to CD1 in the human. Scand J Immunol. 1988 May;27(5):541–547. doi: 10.1111/j.1365-3083.1988.tb02381.x. [DOI] [PubMed] [Google Scholar]
  28. Macatonia S. E., Knight S. C., Edwards A. J., Griffiths S., Fryer P. Localization of antigen on lymph node dendritic cells after exposure to the contact sensitizer fluorescein isothiocyanate. Functional and morphological studies. J Exp Med. 1987 Dec 1;166(6):1654–1667. doi: 10.1084/jem.166.6.1654. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Mackay C. R., Maddox J. F., Gogolin-Ewens K. J., Brandon M. R. Characterization of two sheep lymphocyte differentiation antigens, SBU-T1 and SBU-T6. Immunology. 1985 Aug;55(4):729–737. [PMC free article] [PubMed] [Google Scholar]
  30. Mackay C. Sheep leukocyte molecules: a review of their distribution, structure and possible function. Vet Immunol Immunopathol. 1988 Jul;19(1):1–20. doi: 10.1016/0165-2427(88)90042-6. [DOI] [PubMed] [Google Scholar]
  31. Maddon P. J., Dalgleish A. G., McDougal J. S., Clapham P. R., Weiss R. A., Axel R. The T4 gene encodes the AIDS virus receptor and is expressed in the immune system and the brain. Cell. 1986 Nov 7;47(3):333–348. doi: 10.1016/0092-8674(86)90590-8. [DOI] [PubMed] [Google Scholar]
  32. Maddox J. F., Mackay C. R., Brandon M. R. Surface antigens, SBU-T4 and SBU-T8, of sheep T lymphocyte subsets defined by monoclonal antibodies. Immunology. 1985 Aug;55(4):739–748. [PMC free article] [PubMed] [Google Scholar]
  33. Miller H. R., Adams E. P. Reassortment of lymphocytes in lymph from normal and allografted sheep. Am J Pathol. 1977 Apr;87(1):59–80. [PMC free article] [PubMed] [Google Scholar]
  34. Plunkett M. L., Springer T. A. Purification and characterization of the lymphocyte function-associated-2 (LFA-2) molecule. J Immunol. 1986 Jun 1;136(11):4181–4187. [PubMed] [Google Scholar]
  35. Schuler G., Steinman R. M. Murine epidermal Langerhans cells mature into potent immunostimulatory dendritic cells in vitro. J Exp Med. 1985 Mar 1;161(3):526–546. doi: 10.1084/jem.161.3.526. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Selvaraj P., Plunkett M. L., Dustin M., Sanders M. E., Shaw S., Springer T. A. The T lymphocyte glycoprotein CD2 binds the cell surface ligand LFA-3. 1987 Mar 26-Apr 1Nature. 326(6111):400–403. doi: 10.1038/326400a0. [DOI] [PubMed] [Google Scholar]
  37. Silberberg-Sinakin I., Thorbecke G. J., Baer R. L., Rosenthal S. A., Berezowsky V. Antigen-bearing langerhans cells in skin, dermal lymphatics and in lymph nodes. Cell Immunol. 1976 Aug;25(2):137–151. doi: 10.1016/0008-8749(76)90105-2. [DOI] [PubMed] [Google Scholar]
  38. Silberberg-Sinakin I., Thorbecke G. J. Contact hypersensitivity and Langerhans cells. J Invest Dermatol. 1980 Jul;75(1):61–67. doi: 10.1111/1523-1747.ep12521144. [DOI] [PubMed] [Google Scholar]
  39. Springer T. A., Dustin M. L., Kishimoto T. K., Marlin S. D. The lymphocyte function-associated LFA-1, CD2, and LFA-3 molecules: cell adhesion receptors of the immune system. Annu Rev Immunol. 1987;5:223–252. doi: 10.1146/annurev.iy.05.040187.001255. [DOI] [PubMed] [Google Scholar]
  40. Spry C. J., Pflug A. J., Janossy G., Humphrey J. H. Large mononuclear (veiled) cells like 'Ia-like' membrane antigens in human afferent lympn. Clin Exp Immunol. 1980 Mar;39(3):750–755. [PMC free article] [PubMed] [Google Scholar]
  41. Steinman R. M., Nussenzweig M. C. Dendritic cells: features and functions. Immunol Rev. 1980;53:127–147. doi: 10.1111/j.1600-065x.1980.tb01042.x. [DOI] [PubMed] [Google Scholar]
  42. Stingl G., Katz S. I., Clement L., Green I., Shevach E. M. Immunologic functions of Ia-bearing epidermal Langerhans cells. J Immunol. 1978 Nov;121(5):2005–2013. [PubMed] [Google Scholar]
  43. Veerman A. J. On the interdigitating cells in the thymus-dependent area of the rat spleen: a relation between the mononuclear phagocyte system and T-lymphocytes. Cell Tissue Res. 1974 Apr 11;148(2):247–257. doi: 10.1007/BF00224586. [DOI] [PubMed] [Google Scholar]
  44. Wall K. A., Fitch F. W. Cell-surface modification with an iodinatible imidoester to enhance radiolabeling. J Immunol Methods. 1985 Feb 28;77(1):1–8. doi: 10.1016/0022-1759(85)90177-2. [DOI] [PubMed] [Google Scholar]
  45. Witmer-Pack M. D., Olivier W., Valinsky J., Schuler G., Steinman R. M. Granulocyte/macrophage colony-stimulating factor is essential for the viability and function of cultured murine epidermal Langerhans cells. J Exp Med. 1987 Nov 1;166(5):1484–1498. doi: 10.1084/jem.166.5.1484. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES