Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1989 Oct 1;170(4):1243–1262. doi: 10.1084/jem.170.4.1243

MHC antigen induction by interferon gamma on cultured mouse pancreatic beta cells and macrophages. Genetic analysis of strain differences and discovery of an "occult" class I-like antigen in NOD/Lt mice

PMCID: PMC2189479  PMID: 2507727

Abstract

This study provides a basis for understanding the wide variations reported in the literature in IFN-gamma inducibility of class II MHC antigens on murine beta cells. Inducibility is not an intrinsic property of all mouse beta cells, but instead depends upon strain- (and tissue-) specific response modifying factors. This was demonstrated by comparison of constitutive and IFN-gamma-induced class I and class II MHC gene products on cultured islet cell monolayers. Islet cultures were established from autoimmune diabetes-prone NOD/Lt mice, diabetes- resistant NON/Lt and CBA/J mice, as well as F1 hybrids between these latter two strains and NOD/Lt. Cultures of peritoneal macrophages (M phi) from each strain were established as controls. After 3 wk of culture (with incubation in the presence or absence of IFN-gamma during the last 6 d), constitutive expression as well as IFN-gamma induction of class I MHC antigen expression was demonstrated on NOD/Lt and NON/Lt islet cells by antibody plus complement-mediated cytotoxicity. Although CBA/J islets and M phi did not maintain constitutive class I or class II antigen expression in culture in the absence of IFN-gamma, class I H- 2Kk antigen was IFN-gamma inducible. Whereas IFN-gamma-induced class II I-Ak antigen on CBA/J M phi, it failed to induce this antigen on CBA/J islets. In contrast, I-A antigens were IFN-gamma inducible on NOD/Lt and NON/Lt islets and M phi. In (CBA x NOD)F1 hybrids, loss of IFN- gamma inducibility of the I-ANOD product established that suppression was mediated by a trans-acting factor from the CBA/J genome. In the course of these studies, IFN-gamma inducibility of a crossreactive occult class I-like antigen on both NOD/Lt islet cell and M phi cultures was unexpectedly detected when mAb 28-13-3 (public specificity 39, reactive with H-2Kb,f) was used as a negative control. Although not detectable by cytofluorographic analysis of freshly isolated NOD/Lt splenic leukocytes, occult antigen could be induced on NOD/Lt peritoneal macrophages (M phi) cultured for 3 d in IFN-gamma. Time course of induction showed the occult antigen to be distinct from NOD/Lt class I and II gene products. In both islet cell and M phi cultures established from (CBA x NOD)F1 hybrids, trans-suppressive factor(s) from the CBA/J genome not only suppressed IFN-gamma-induced expression of I-ANOD, but additionally suppressed occult antigen induction. Backcross of F1 to both parental strains indicated that the occult locus was on Chr 17, tightly linked to MHC.(ABSTRACT TRUNCATED AT 400 WORDS)

Full Text

The Full Text of this article is available as a PDF (1.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bottazzo G. F., Pujol-Borrell R., Hanafusa T., Feldmann M. Role of aberrant HLA-DR expression and antigen presentation in induction of endocrine autoimmunity. Lancet. 1983 Nov 12;2(8359):1115–1119. doi: 10.1016/s0140-6736(83)90629-3. [DOI] [PubMed] [Google Scholar]
  2. Campbell I. L., Oxbrow L., Koulmanda M., Harrison L. C. IFN-gamma induces islet cell MHC antigens and enhances autoimmune, streptozotocin-induced diabetes in the mouse. J Immunol. 1988 Feb 15;140(4):1111–1116. [PubMed] [Google Scholar]
  3. Campbell I. L., Oxbrow L., West J., Harrison L. C. Regulation of MHC protein expression in pancreatic beta-cells by interferon-gamma and tumor necrosis factor-alpha. Mol Endocrinol. 1988 Feb;2(2):101–107. doi: 10.1210/mend-2-2-101. [DOI] [PubMed] [Google Scholar]
  4. Farr A. G., Mannschreck J. W., Anderson S. K. Expression of class II MHC antigens in murine pancreas after streptozocin-induced insulitis. Diabetes. 1988 Oct;37(10):1373–1379. doi: 10.2337/diab.37.10.1373. [DOI] [PubMed] [Google Scholar]
  5. Faustman D., Hauptfeld V., Davie J. M., Lacy P. E., Shreffler D. C. Murine pancreatic beta-cells express H-2K and H-2D but not Ia antigens. J Exp Med. 1980 Jun 1;151(6):1563–1568. doi: 10.1084/jem.151.6.1563. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Green W. R., Rich R. F., Beadling C. Differential induction of H-2K versus H-2D class I major histocompatibility antigens by recombinant gamma interferon. Lack of Kk augmentation in a leukemia virus-induced tumor is due to a cis-dominant effect. J Exp Med. 1988 May 1;167(5):1616–1624. doi: 10.1084/jem.167.5.1616. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hakem R., Le Bouteiller P., Barad M., Trujillo M., Mercier P., Wietzerbin J., Lemonnier F. A. IFN-mediated differential regulation of the expression of HLA-B7 and HLA-A3 class I genes. J Immunol. 1989 Jan 1;142(1):297–305. [PubMed] [Google Scholar]
  8. Hanafusa T., Fujino-Kurihara H., Miyazaki A., Yamada K., Nakajima H., Miyagawa J., Kono N., Tarui S. Expression of class II major histocompatibility complex antigens on pancreatic B cells in the NOD mouse. Diabetologia. 1987 Feb;30(2):104–108. doi: 10.1007/BF00274580. [DOI] [PubMed] [Google Scholar]
  9. Hämmerling G. J., Rüsch E., Tada N., Kimura S., Hämmerling U. Localization of allodeterminants on H-2Kb antigens determined with monoclonal antibodies and H-2 mutant mice. Proc Natl Acad Sci U S A. 1982 Aug;79(15):4737–4741. doi: 10.1073/pnas.79.15.4737. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Ikegami H., Makino S., Harada M., Eisenbarth G. S., Hattori M. The cataract Shionogi mouse, a sister strain of the non-obese diabetic mouse: similar class II but different class I gene products. Diabetologia. 1988 Apr;31(4):254–258. doi: 10.1007/BF00290594. [DOI] [PubMed] [Google Scholar]
  11. In't Veld P. A., Pipeleers D. G. In situ analysis of pancreatic islets in rats developing diabetes. Appearance of nonendocrine cells with surface MHC class II antigens and cytoplasmic insulin immunoreactivity. J Clin Invest. 1988 Sep;82(3):1123–1128. doi: 10.1172/JCI113669. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Inaba K., Kitaura M., Kato T., Watanabe Y., Kawade Y., Muramatsu S. Contrasting effect of alpha/beta- and gamma-interferons on expression of macrophage Ia antigens. J Exp Med. 1986 Apr 1;163(4):1030–1035. doi: 10.1084/jem.163.4.1030. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Janeway C. A., Jr, Jones B., Hayday A. Specificity and function of T cells bearing gamma delta receptors. Immunol Today. 1988 Mar;9(3):73–76. doi: 10.1016/0167-5699(88)91267-4. [DOI] [PubMed] [Google Scholar]
  14. Latron F., Jotterand-Bellomo M., Maffei A., Scarpellino L., Bernard M., Strominger J. L., Accolla R. S. Active suppression of major histocompatibility complex class II gene expression during differentiation from B cells to plasma cells. Proc Natl Acad Sci U S A. 1988 Apr;85(7):2229–2233. doi: 10.1073/pnas.85.7.2229. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Leiter E. H. Murine macrophages and pancreatic beta cells. Chemotactic properties of insulin and beta-cytostatic action of interleukin 1. J Exp Med. 1987 Oct 1;166(4):1174–1179. doi: 10.1084/jem.166.4.1174. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Mann D. W., Forman J. A third class I major histocompatibility complex antigen encoded by a gene in the D region of the H-2d haplotype recognized by cytotoxic T lymphocytes. Immunogenetics. 1988;28(1):38–45. doi: 10.1007/BF00372527. [DOI] [PubMed] [Google Scholar]
  17. Manyak C. L., Tse H., Fischer P., Coker L., Sigal N. H., Koo G. C. Regulation of class II MHC molecules on human endothelial cells. Effects of IFN and dexamethasone. J Immunol. 1988 Jun 1;140(11):3817–3821. [PubMed] [Google Scholar]
  18. Markmann J., Lo D., Naji A., Palmiter R. D., Brinster R. L., Heber-Katz E. Antigen presenting function of class II MHC expressing pancreatic beta cells. Nature. 1988 Dec 1;336(6198):476–479. doi: 10.1038/336476a0. [DOI] [PubMed] [Google Scholar]
  19. Momburg F., Koch N., Möller P., Moldenhauer G., Butcher G. W., Hämmerling G. J. Differential expression of Ia and Ia-associated invariant chain in mouse tissues after in vivo treatment with IFN-gamma. J Immunol. 1986 Feb 1;136(3):940–948. [PubMed] [Google Scholar]
  20. Nishimoto H., Kikutani H., Yamamura K., Kishimoto T. Prevention of autoimmune insulitis by expression of I-E molecules in NOD mice. 1987 Jul 30-Aug 5Nature. 328(6129):432–434. doi: 10.1038/328432a0. [DOI] [PubMed] [Google Scholar]
  21. Ozato K., Epstein S. L., Henkart P., Hansen T. H., Sachs D. H. Studies on monoclonal antibodies to mouse MHC products. Transplant Proc. 1981 Mar;13(1 Pt 2):958–962. [PubMed] [Google Scholar]
  22. Ozato K., Mayer N. M., Sachs D. H. Monoclonal antibodies to mouse major histocompatibility complex antigens. Transplantation. 1982 Sep;34(3):113–120. doi: 10.1097/00007890-198209000-00001. [DOI] [PubMed] [Google Scholar]
  23. Prochazka M., Leiter E. H., Serreze D. V., Coleman D. L. Three recessive loci required for insulin-dependent diabetes in nonobese diabetic mice. Science. 1987 Jul 17;237(4812):286–289. doi: 10.1126/science.2885918. [DOI] [PubMed] [Google Scholar]
  24. Pujol-Borrell R., Bottazzo G. F. Puzzling diabetic transgenic mice: a lesson for human type 1 diabetes? Immunol Today. 1988 Oct;9(10):303–306. doi: 10.1016/0167-5699(88)91322-9. [DOI] [PubMed] [Google Scholar]
  25. Rembecki R. M., Kumar V., David C. S., Bennett M. Bone marrow cell transplants involving intra-H-2 recombinant inbred mouse strains. Evidence that hemopoietic histocompatibility-1 (Hh-1) genes are distinct from H-2D or H-2L. J Immunol. 1988 Oct 1;141(7):2253–2260. [PubMed] [Google Scholar]
  26. Schwizer R. W., Leiter E. H., Evans R. Macrophage-mediated cytotoxicity against cultured pancreatic islet cells. Transplantation. 1984 Jun;37(6):539–544. doi: 10.1097/00007890-198406000-00002. [DOI] [PubMed] [Google Scholar]
  27. Serreze D. V., Leiter E. H. Defective activation of T suppressor cell function in nonobese diabetic mice. Potential relation to cytokine deficiencies. J Immunol. 1988 Jun 1;140(11):3801–3807. [PubMed] [Google Scholar]
  28. Serreze D. V., Leiter E. H., Worthen S. M., Shultz L. D. NOD marrow stem cells adoptively transfer diabetes to resistant (NOD x NON)F1 mice. Diabetes. 1988 Feb;37(2):252–255. doi: 10.2337/diab.37.2.252. [DOI] [PubMed] [Google Scholar]
  29. Signore A., Cooke A., Pozzilli P., Butcher G., Simpson E., Beverley P. C. Class-II and IL2 receptor positive cells in the pancreas of NOD mice. Diabetologia. 1987 Nov;30(11):902–905. doi: 10.1007/BF00274802. [DOI] [PubMed] [Google Scholar]
  30. Soloski M. J., Hood L., Stroynowski I. Qa-region class I gene expression: identification of a second class I gene, Q9, encoding a Qa-2 polypeptide. Proc Natl Acad Sci U S A. 1988 May;85(9):3100–3104. doi: 10.1073/pnas.85.9.3100. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Stroynowski I., Soloski M., Low M. G., Hood L. A single gene encodes soluble and membrane-bound forms of the major histocompatibility Qa-2 antigen: anchoring of the product by a phospholipid tail. Cell. 1987 Aug 28;50(5):759–768. doi: 10.1016/0092-8674(87)90334-5. [DOI] [PubMed] [Google Scholar]
  32. Suenaga K., Yoon J. W. Association of beta-cell-specific expression of endogenous retrovirus with development of insulitis and diabetes in NOD mouse. Diabetes. 1988 Dec;37(12):1722–1726. doi: 10.2337/diab.37.12.1722. [DOI] [PubMed] [Google Scholar]
  33. Todd J. A., Acha-Orbea H., Bell J. I., Chao N., Fronek Z., Jacob C. O., McDermott M., Sinha A. A., Timmerman L., Steinman L. A molecular basis for MHC class II--associated autoimmunity. Science. 1988 May 20;240(4855):1003–1009. doi: 10.1126/science.3368786. [DOI] [PubMed] [Google Scholar]
  34. Transy C., Nash S. R., David-Watine B., Cochet M., Hunt S. W., 3rd, Hood L. E., Kourilsky P. A low polymorphic mouse H-2 class I gene from the Tla complex is expressed in a broad variety of cell types. J Exp Med. 1987 Aug 1;166(2):341–361. doi: 10.1084/jem.166.2.341. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Vadheim C. M., Rotter J. I., Maclaren N. K., Riley W. J., Anderson C. E. Preferential transmission of diabetic alleles within the HLA gene complex. N Engl J Med. 1986 Nov 20;315(21):1314–1318. doi: 10.1056/NEJM198611203152103. [DOI] [PubMed] [Google Scholar]
  36. Warner C. M., Gollnick S. O., Flaherty L., Goldbard S. B. Analysis of Qa-2 antigen expression by preimplantation mouse embryos: possible relationship to the preimplantation-embryo-development (Ped) gene product. Biol Reprod. 1987 Apr;36(3):611–616. doi: 10.1095/biolreprod36.3.611. [DOI] [PubMed] [Google Scholar]
  37. Weiss E. H., Golden L., Fahrner K., Mellor A. L., Devlin J. J., Bullman H., Tiddens H., Bud H., Flavell R. A. Organization and evolution of the class I gene family in the major histocompatibility complex of the C57BL/10 mouse. Nature. 1984 Aug 23;310(5979):650–655. doi: 10.1038/310650a0. [DOI] [PubMed] [Google Scholar]
  38. Wright J. R., Jr, Lacy P. E., Unanue E. R., Muszynski C., Hauptfeld V. Interferon-mediated induction of Ia antigen expression on isolated murine whole islets and dispersed islet cells. Diabetes. 1986 Oct;35(10):1174–1177. doi: 10.2337/diab.35.10.1174. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES