Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1987 Aug 1;166(2):419–432. doi: 10.1084/jem.166.2.419

Circulating antibodies to mouse laminin in Chagas disease, American cutaneous leishmaniasis, and normal individuals recognize terminal galactosyl(alpha 1-3)-galactose epitopes

PMCID: PMC2189599  PMID: 2439642

Abstract

Sera from patients with American cutaneous leishmaniasis and Chagas disease and from monkeys infected with either Trypanosoma cruzi or Trypanosoma rhodesiense show, in RIAs, strong binding to mouse laminin. A distinct although weaker binding activity is also detected in normal human sera. The antibodies recognize a common carbohydrate epitope present on mouse laminin, which was assigned to a terminal galactosyl(alpha 1-3)-galactose group. Distinct crossreactions were observed with some other basement membrane proteins, rabbit glycosphingolipids, defucosylated human B blood group substance and components produced by some human tumor cells. Only little activity was, however, found on laminin obtained from human placenta. The data indicate that the antibodies arising in infectious diseases are stimulated by similar carbohydrate epitopes present on the surface of parasites. Tissue-specific occurrence of such epitopes may exist and explain the involvement of distinct tissues in autoimmune disorders.

Full Text

The Full Text of this article is available as a PDF (969.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arumugham R. G., Hsieh T. C., Tanzer M. L., Laine R. A. Structures of the asparagine-linked sugar chains of laminin. Biochim Biophys Acta. 1986 Aug 6;883(1):112–126. doi: 10.1016/0304-4165(86)90142-x. [DOI] [PubMed] [Google Scholar]
  2. Avila J. L., Rojas M., Rieber M. Antibodies to laminin in American cutaneous leishmaniasis. Infect Immun. 1984 Jan;43(1):402–406. doi: 10.1128/iai.43.1.402-406.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Avila J. L., Rojas M., Velazquez-Avila G., von der Mark H., Timpl R. Antibodies to basement membrane protein nidogen in Chagas' disease and American cutaneous leishmaniasis. J Clin Microbiol. 1986 Nov;24(5):775–778. doi: 10.1128/jcm.24.5.775-778.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Basu M., Presper K. A., Basu S., Hoffman L. M., Brooks S. E. Differential activities of glycolipid glycosyltransferases in Tay-Sachs disease: studies in cultured cells from cerebrum. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4270–4274. doi: 10.1073/pnas.76.9.4270. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bernard A., Lauwerys R., Mahieu P., Foidart J. M. Anti-basement-membrane antibodies in the serum of healthy subjects. N Engl J Med. 1986 May 29;314(22):1456–1457. doi: 10.1056/nejm198605293142219. [DOI] [PubMed] [Google Scholar]
  6. Betteridge A., Watkins W. M. Two alpha-3-D-galactosyltransferases in rabbit stomach mucosa with different acceptor substrate specificities. Eur J Biochem. 1983 Apr 15;132(1):29–35. doi: 10.1111/j.1432-1033.1983.tb07321.x. [DOI] [PubMed] [Google Scholar]
  7. Cossio P. M., Diez C., Szarfman A., Kreutzer E., Candiolo B., Arana R. M. Chagasic cardiopathy. Demonstration of a serum gamma globulin factor which reacts with endocardium and vascular structures. Circulation. 1974 Jan;49(1):13–21. doi: 10.1161/01.cir.49.1.13. [DOI] [PubMed] [Google Scholar]
  8. Cossio P. M., Laguens R. P., Diez C., Szarfman A., Segal A., Arana R. M. Chagasic cardiopathy. Antibodies reacting with plasma membrane of striated muscle and endothelial cells. Circulation. 1974 Dec;50(6):1252–1259. doi: 10.1161/01.cir.50.6.1252. [DOI] [PubMed] [Google Scholar]
  9. Dziadek M., Paulsson M., Aumailley M., Timpl R. Purification and tissue distribution of a small protein (BM-40) extracted from a basement membrane tumor. Eur J Biochem. 1986 Dec 1;161(2):455–464. doi: 10.1111/j.1432-1033.1986.tb10466.x. [DOI] [PubMed] [Google Scholar]
  10. Eto T., Ichikawa Y., Nishimura K., Ando S., Yamakawa T. Chemistry of lipid of the posthemyolytic residue or stroma of erythrocytes. XVI. Occurrence of ceramide pentasaccharide in the membrane of erythrocytes and reticulocytes of rabbit. J Biochem. 1968 Aug;64(2):205–213. doi: 10.1093/oxfordjournals.jbchem.a128881. [DOI] [PubMed] [Google Scholar]
  11. FOLCH J., LEES M., SLOANE STANLEY G. H. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 1957 May;226(1):497–509. [PubMed] [Google Scholar]
  12. FRANCOIS C., MARSHALL R. D., NEUBERGER A. Carbohydrates in protein. 4. The determination of mannose in hen's-egg albumin by radioisotope dilution. Biochem J. 1962 May;83:335–341. doi: 10.1042/bj0830335. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Foidart J. M., Hunt J., Lapiere C. M., Nusgens B., De Rycker C., Bruwier M., Lambotte R., Bernard A., Mahieu P. Antibodies to laminin in preeclampsia. Kidney Int. 1986 May;29(5):1050–1057. doi: 10.1038/ki.1986.106. [DOI] [PubMed] [Google Scholar]
  14. Galili U., Buehler J., Shohet S. B., Macher B. A. The human natural anti-Gal IgG. III. The subtlety of immune tolerance in man as demonstrated by crossreactivity between natural anti-Gal and anti-B antibodies. J Exp Med. 1987 Mar 1;165(3):693–704. doi: 10.1084/jem.165.3.693. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Galili U., Clark M. R., Shohet S. B., Buehler J., Macher B. A. Evolutionary relationship between the natural anti-Gal antibody and the Gal alpha 1----3Gal epitope in primates. Proc Natl Acad Sci U S A. 1987 Mar;84(5):1369–1373. doi: 10.1073/pnas.84.5.1369. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Galili U., Clark M. R., Shohet S. B. Excessive binding of natural anti-alpha-galactosyl immunoglobin G to sickle erythrocytes may contribute to extravascular cell destruction. J Clin Invest. 1986 Jan;77(1):27–33. doi: 10.1172/JCI112286. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Galili U., Macher B. A., Buehler J., Shohet S. B. Human natural anti-alpha-galactosyl IgG. II. The specific recognition of alpha (1----3)-linked galactose residues. J Exp Med. 1985 Aug 1;162(2):573–582. doi: 10.1084/jem.162.2.573. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Galili U., Rachmilewitz E. A., Peleg A., Flechner I. A unique natural human IgG antibody with anti-alpha-galactosyl specificity. J Exp Med. 1984 Nov 1;160(5):1519–1531. doi: 10.1084/jem.160.5.1519. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Gulati A. K., Zalewski A. A., Sharma K. B., Ogrowsky D., Sohal G. S. A comparison of lectin binding in rat and human peripheral nerve. J Histochem Cytochem. 1986 Nov;34(11):1487–1493. doi: 10.1177/34.11.3772078. [DOI] [PubMed] [Google Scholar]
  20. Hakomori S. Tumor-associated carbohydrate antigens. Annu Rev Immunol. 1984;2:103–126. doi: 10.1146/annurev.iy.02.040184.000535. [DOI] [PubMed] [Google Scholar]
  21. Hanfland P., Egge H., Dabrowski U., Kuhn S., Roelcke D., Dabrowski J. Isolation and characterization of an I-active ceramide decasaccharide from rabbit erythrocyte membranes. Biochemistry. 1981 Sep 1;20(18):5310–5319. doi: 10.1021/bi00521a034. [DOI] [PubMed] [Google Scholar]
  22. Hawkes R., Niday E., Gordon J. A dot-immunobinding assay for monoclonal and other antibodies. Anal Biochem. 1982 Jan 1;119(1):142–147. doi: 10.1016/0003-2697(82)90677-7. [DOI] [PubMed] [Google Scholar]
  23. Hennigar R. A., Sens D. A., Spicer S. S., Schulte B. A., Newman V., Sens M. A., Garvin A. J. Lectin histochemistry of nephroblastoma (Wilms' tumour). Histochem J. 1985 Oct;17(10):1091–1110. doi: 10.1007/BF01002535. [DOI] [PubMed] [Google Scholar]
  24. Hudson L. Autoimmune phenomena in chronic chagasic cardiopathy. Parasitol Today. 1985 Jul;1(1):6–9. doi: 10.1016/0169-4758(85)90099-7. [DOI] [PubMed] [Google Scholar]
  25. Kefalides N. A., Pegg M. T., Ohno N., Poon-King T., Zabriskie J., Fillit H. Antibodies to basement membrane collagen and to laminin are present in sera from patients with poststreptococcal glomerulonephritis. J Exp Med. 1986 Mar 1;163(3):588–602. doi: 10.1084/jem.163.3.588. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Kellokumpu I. H. Differences in lectin reactivities of cellular glycoconjugates between primary human colorectal carcinomas and their metastases. Cancer Res. 1986 Sep;46(9):4620–4625. [PubMed] [Google Scholar]
  27. Khoury E. L., Diez C., Cossio P. M., Arana R. M. Heterophil nature of EVI antibody in Trypanosoma cruzi infection. Clin Immunol Immunopathol. 1983 May;27(2):283–288. doi: 10.1016/0090-1229(83)90078-8. [DOI] [PubMed] [Google Scholar]
  28. Khoury E. L., Ritacco V., Cossio P. M., Laguens R. P., Szarfman A., Diez C., Arana R. M. Circulating antibodies to peripheral nerve in American trypanosomiasis (Chagas' disease). Clin Exp Immunol. 1979 Apr;36(1):8–15. [PMC free article] [PubMed] [Google Scholar]
  29. Kierszenbaum F. Is there autoimmunity in Chagas disease? Parasitol Today. 1985 Jul;1(1):4–6. doi: 10.1016/0169-4758(85)90098-5. [DOI] [PubMed] [Google Scholar]
  30. Lauwerys R., Bernard A., Roels H., Buchet J. P., Gennart J. P., Mahieu P., Foidart J. M. Anti-laminin antibodies in workers exposed to mercury vapour. Toxicol Lett. 1983 Jun;17(1-2):113–116. doi: 10.1016/0378-4274(83)90045-0. [DOI] [PubMed] [Google Scholar]
  31. Mohan P. S., Spiro R. G. Macromolecular organization of basement membranes. Characterization and comparison of glomerular basement membrane and lens capsule components by immunochemical and lectin affinity procedures. J Biol Chem. 1986 Mar 25;261(9):4328–4336. [PubMed] [Google Scholar]
  32. Ohno M., Martinez-Hernandez A., Ohno N., Kefalides N. A. Isolation of laminin from human placental basement membranes: amnion, chorion and chorionic microvessels. Biochem Biophys Res Commun. 1983 May 16;112(3):1091–1098. doi: 10.1016/0006-291x(83)91730-8. [DOI] [PubMed] [Google Scholar]
  33. Ozawa M., Higaki K., Kawata M., Sekiya S., Takamizawa H., Okumura K., Muramatsu T. An alpha-galactosyl residue in the large carbohydrates of teratocarcinoma cells: the antigenic determinant recognized by sera from patients with ovarian germ cell tumors. Biochem Biophys Res Commun. 1983 Aug 30;115(1):268–274. doi: 10.1016/0006-291x(83)90999-3. [DOI] [PubMed] [Google Scholar]
  34. Peters B. P., Goldstein I. J. The use of fluorescein-conjugated Bandeiraea simplicifolia B4-isolectin as a histochemical reagent for the detection of alpha-D-galactopyranosyl groups. Their occurrence in basement membranes. Exp Cell Res. 1979 May;120(2):321–334. doi: 10.1016/0014-4827(79)90392-6. [DOI] [PubMed] [Google Scholar]
  35. Rao C. N., Goldstein I. J., Liotta L. A. Lectin-binding domains on laminin. Arch Biochem Biophys. 1983 Nov;227(1):118–124. doi: 10.1016/0003-9861(83)90354-5. [DOI] [PubMed] [Google Scholar]
  36. Rohde H., Wick G., Timpl R. Immunochemical characterization of the basement membrane glycoprotein laminin. Eur J Biochem. 1979 Dec;102(1):195–201. doi: 10.1111/j.1432-1033.1979.tb06280.x. [DOI] [PubMed] [Google Scholar]
  37. Sadun E. H., Johnson A. J., Nagle R. B., Duxbury R. E. Experimental infections with African trypanosomes. V. Preliminary parasitological, clinical, hematological, serological, and pathological observations in rhesus monkeys infected with Trypanosoma rhodesiense. Am J Trop Med Hyg. 1973 May;22(3):323–330. doi: 10.4269/ajtmh.1973.22.323. [DOI] [PubMed] [Google Scholar]
  38. Santos-Buch C. A. American trypanosomiasis: Chagas' disease. Int Rev Exp Pathol. 1979;19:63–100. [PubMed] [Google Scholar]
  39. Spiro R. G., Bhoyroo V. D. Occurrence of alpha-D-galactosyl residues in the thyroglobulins from several species. Localization in the saccharide chains of the complex carbohydrate units. J Biol Chem. 1984 Aug 10;259(15):9858–9866. [PubMed] [Google Scholar]
  40. Stellner K., Saito H., Hakomori S. I. Determination of aminosugar linkages in glycolipids by methylation. Aminosugar linkages of ceramide pentasaccharides of rabbit erythrocytes and of Forssman antigen. Arch Biochem Biophys. 1973 Apr;155(2):464–472. doi: 10.1016/0003-9861(73)90138-0. [DOI] [PubMed] [Google Scholar]
  41. Stellner K., Watanabe K., Hakomori S. Isolation and characterization of glycosphingolipids with blood group H specificity from membranes of human erythrocytes. Biochemistry. 1973 Feb;12(4):656–661. doi: 10.1021/bi00728a014. [DOI] [PubMed] [Google Scholar]
  42. Szarfman A., Luquetti A., Rassi A., Rezende J. M., Schmuñis G. A. Tissue-reacting immunoglobulins in patients with different clinical forms of Chagas' disease. Am J Trop Med Hyg. 1981 Jan;30(1):43–46. doi: 10.4269/ajtmh.1981.30.43. [DOI] [PubMed] [Google Scholar]
  43. Szarfman A., Terranova V. P., Rennard S. I., Foidart J. M., de Fatima Lima M., Scheinman J. I., Martin G. R. Antibodies to laminin in Chagas' disease. J Exp Med. 1982 Apr 1;155(4):1161–1171. doi: 10.1084/jem.155.4.1161. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Timpl R., Paulsson M., Dziadek M., Fujiwara S. Basement membranes. Methods Enzymol. 1987;145:363–391. doi: 10.1016/0076-6879(87)45021-0. [DOI] [PubMed] [Google Scholar]
  45. Timpl R., Rohde H., Robey P. G., Rennard S. I., Foidart J. M., Martin G. R. Laminin--a glycoprotein from basement membranes. J Biol Chem. 1979 Oct 10;254(19):9933–9937. [PubMed] [Google Scholar]
  46. Towbin H., Schoenenberger C., Ball R., Braun D. G., Rosenfelder G. Glycosphingolipid-blotting: an immunological detection procedure after separation by thin layer chromatography. J Immunol Methods. 1984 Sep 4;72(2):471–479. doi: 10.1016/0022-1759(84)90015-2. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES