Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1975 Apr 1;141(4):904–917.

Evidence for the clonal abortion theory of B-lymphocyte tolerance

PMCID: PMC2189748  PMID: 47889

Abstract

This paper deals with the behavior of adult mouse bone marrow cells placed in tissue culture with or without antigen, and subsequently assessed for immune competence after adoptive transfer into lethally X- irradiated, syngeneic hosts. Attention was focussed on B lymphocytes through using hapten human gamma globulin (HGG) preparations as putative tolerogens in tissue culture, the T-cell-independent antigens DNP-POL and NIP-POL as challenge injections in adoptive hosts, and numbers of hapten-specific PFC in host spleens for the quantitation of immune competence. It was found that the capacity of bone marrow cells to mount an adoptive immune response rose by a factor of about fivefold over 3 days in tissue culture. This rise was completely abolished by the presence in the culture of hapten-HGG conjugates with about one mole of hapten per carrier molecule. The prevention of the emergence of immune competence amongst maturing B cells was termed clonal abortion tolerogenesis. Dose-response studies showed the lowest effective antigen concentration to be between 2.5 times 10- minus 10 and 2.5 times 10- minus 9 M, and a standard concentration of 2.5 times 10- minus 8 M was chosen as producing near maximal effects. The tolerance was antigen-specific and time-dependent, being maximal only when antigen was present continuously as the cultured cells was maturing. It did not depend on the presence of T lymphocytes in marrow, and was not of an "infectious" type. In contrast to tolerogenesis of mature B lymphocytes by high antigen concentrations, it could not be abolished by lipopolysaccharide. We speculate that clonal abortion may be a tolerance mechanism of great physiological significance for self- recognition, and discuss the results in the framework of other recent tolerance models, including those involving receptor blockade and suppressor T cells.

Full Text

The Full Text of this article is available as a PDF (789.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Basten A., Miller J. F., Sprent J., Cheers C. Cell-to-cell interaction in the immune response. X. T-cell-dependent suppression in tolerant mice. J Exp Med. 1974 Jul 1;140(1):199–217. doi: 10.1084/jem.140.1.199. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Brownstone A., Mitchison N. A., Pitt-Rivers R. Chemical and serological studies with an iodine-containing synthetic immunological determinant 4-hydroxy-3-iodo-5-nitrophenylacetic acid (NIP) and related compounds. Immunology. 1966 May;10(5):465–479. [PMC free article] [PubMed] [Google Scholar]
  3. Diener E., Armstrong W. D. Immunological tolerance in vitro: kinetic studies at the cellular level. J Exp Med. 1969 Mar 1;129(3):591–603. doi: 10.1084/jem.129.3.591. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Feldmann M., Diener E. Antibody-mediated suppression of the immune response in vitro. 3. Low zone tolerance in vitro. Immunology. 1971 Sep;21(3):387–404. [PMC free article] [PubMed] [Google Scholar]
  5. Feldmann M. Induction of immunity and tolerance in vitro by hapten protein conjugates. I. The relationship between the degree of hapten conjugation and the immunogenicity of dinitrophenylated polymerized flagellin. J Exp Med. 1972 Apr 1;135(4):735–753. doi: 10.1084/jem.135.4.735. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Gershon R. K., Kondo K. Cell interactions in the induction of tolerance: the role of thymic lymphocytes. Immunology. 1970 May;18(5):723–737. [PMC free article] [PubMed] [Google Scholar]
  7. Golan D. T., Borel Y. Nonantigenicity and immunologic tolerance: the role of the carrier in the induction of tolerance to the hapten. J Exp Med. 1971 Oct 1;134(4):1046–1061. doi: 10.1084/jem.134.4.1046. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Howard J. G. Cellular events in the induction and loss of tolerance to pneumococcal polysaccharides. Transplant Rev. 1972;8:50–75. doi: 10.1111/j.1600-065x.1972.tb01564.x. [DOI] [PubMed] [Google Scholar]
  9. Howard J. G., Zola H., Christie G. H., Courtenay B. M. Studies on immunological paralysis. V. The influence of molecular weight on the immunogenicity, tolerogenicity and antibody-neutralizing activity of the 3 pneumococcal polysaccharide. Immunology. 1971 Sep;21(3):535–546. [PMC free article] [PubMed] [Google Scholar]
  10. Katz D. H., Hamaoka T., Benacerraf B. Immunological tolerance in bone marrow-derived lymphocytes. I. Evidence for an intracellular mechanism of inactivation of hapten-specific precursors of antibody-forming cells. J Exp Med. 1972 Dec 1;136(6):1404–1429. doi: 10.1084/jem.136.6.1404. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. LEDERBERG J. Genes and antibodies. Science. 1959 Jun 19;129(3364):1649–1653. doi: 10.1126/science.129.3364.1649. [DOI] [PubMed] [Google Scholar]
  12. Louis J., Chiller J. M., Weigle W. O. Fate of antigen-binding cells in unresponsive and immune mice. J Exp Med. 1973 Feb 1;137(2):461–469. doi: 10.1084/jem.137.2.461. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Marbrook J. Primary immune response in cultures of spleen cells. Lancet. 1967 Dec 16;2(7529):1279–1281. doi: 10.1016/s0140-6736(67)90393-5. [DOI] [PubMed] [Google Scholar]
  14. Mitchell G. F. T cell modification of B cell responses to antigen in mice. Contemp Top Immunobiol. 1974;3:97–116. doi: 10.1007/978-1-4684-3045-5_4. [DOI] [PubMed] [Google Scholar]
  15. NOSSAL G. J. The induction of immunological tolerance in rats to foreign erythrocytes. Aust J Exp Biol Med Sci. 1958 Jun;36(3):235–244. doi: 10.1038/icb.1958.25. [DOI] [PubMed] [Google Scholar]
  16. Nossal G. J. Principles of immunological tolerance and immunocyte receptor blockade. Adv Cancer Res. 1974;20:93–130. doi: 10.1016/s0065-230x(08)60109-8. [DOI] [PubMed] [Google Scholar]
  17. Osmond D. G., Nossal G. J. Differentiation of lymphocytes in mouse bone marrow. I. Quantitative radioautographic studies of antiglobulin binding by lymphocytes in bone marrow and lymphoid tissues. Cell Immunol. 1974 Jul;13(1):117–131. doi: 10.1016/0008-8749(74)90232-9. [DOI] [PubMed] [Google Scholar]
  18. Osmond D. G., Nossal G. J. Differentiation of lymphocytes in mouse bone marrow. II. Kinetics of maturation and renewal of antiglobulin-binding cells studied by double labeling. Cell Immunol. 1974 Jul;13(1):132–145. doi: 10.1016/0008-8749(74)90233-0. [DOI] [PubMed] [Google Scholar]
  19. Schlegel R. A. Antigen-initiated B lymphocyte differentiation. T lymphocyte dependence and radioresistant helper activity in the primary and secondary adoptive transfer immune responses to the hapten 4-hydroxy-3-iodo-5-nitrophenylacetic acid presented on the carrier polymerised bacterial flagellin. Aust J Exp Biol Med Sci. 1974 Jun;52(Pt 3):455–470. [PubMed] [Google Scholar]
  20. Schrader J. W. Induction of immunological tolerance to a thymus-dependent antigen in the absence of thymus-derived cells. J Exp Med. 1974 May 1;139(5):1303–1316. doi: 10.1084/jem.139.5.1303. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Stocker J. W., Osmond D. G., Nossal G. J. Differentiation of lymphocytes in the mouse bone marrow. III. The adoptive response of bone marrow cells to a thymus cell-independent antigen. Immunology. 1974 Nov;27(5):795–806. [PMC free article] [PubMed] [Google Scholar]
  22. Weigle W. O., Chiller J. M., Habicht G. S. Effect of immunological unresponsiveness on different cell populations. Transplant Rev. 1972;8:3–25. doi: 10.1111/j.1600-065x.1972.tb01562.x. [DOI] [PubMed] [Google Scholar]
  23. Weigle W. O. Immunological unresponsiveness. Adv Immunol. 1973;16:61–122. doi: 10.1016/s0065-2776(08)60296-5. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES