Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1975 May 1;141(5):1114–1132. doi: 10.1084/jem.141.5.1114

Proliferation and colony-forming ability of peritoneal exudate cells in liquid culture

PMCID: PMC2189778  PMID: 1092793

Abstract

Peritoneal exudate cells, obtained from mice injected with thioglycollate medium and cultured in medium containing L-cell- conditioned medium, will proliferate in an exponential fashion for 18 days with a doubling time of 68 h. After a 2 h pulse of tritiated thymidine, labeled adherent cells increased to a maximum of 22-34% during the 1st and 2nd wk of culture. Increasing the cell concentration from 2 times 10-3 to 2 times 10-5 cells/culture reduced exponential growth to 10 days and the doubling time was increased to 81.6 h. Under these culture conditions, peritoneal exudate cells were shown to form colonies on the surface of culture dishes when plated at low density. The cells within the colony were shown to be macrophages using yeast and antibody-coated sheep erythrocytes as a test for phagocytic function. The plating efficiolonies arose from a single precursor cell. The adherent cell population contains the colony-forming precursors. These precursors can be stimulated to form colonies for at least 2 wk by the addition of conditioned medium to cultures at various times after plating. While very few colony-forming cells could be demonstrated in the unstimulated peritoneal lavage, their numbers begin to increase in the exudate 4 h after injection of thioglycollate medium and reach a maximum by day 3 and then decrease. Isolated colonies may be useful in studying the function of macrophages.

Full Text

The Full Text of this article is available as a PDF (1.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Argyris B. F. Role of macrophages in immunological maturation. J Exp Med. 1968 Sep 1;128(3):459–467. doi: 10.1084/jem.128.3.459. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Berken A., Benacerraf B. Sedimentation properties of antibody cytophilic for macrophages. J Immunol. 1968 Jun;100(6):1219–1222. [PubMed] [Google Scholar]
  3. Carpenter R. R., Barsales P. B. Uptake by mononuclear phagocytes of protein-coated bentonite particles stabilized with a carbodiimide. J Immunol. 1967 Apr;98(4):844–853. [PubMed] [Google Scholar]
  4. Donald K. J. The mechanism of enhanced clearance of colloidal carbon from the blood of rabbits stimulated with a tubercle bacillary lipid. J Pathol. 1972 Oct;108(2):97–104. doi: 10.1002/path.1711080202. [DOI] [PubMed] [Google Scholar]
  5. Evans R., Alexander P. Role of macrophages in tumour immunity. I. Co-operation between macrophages and lymphoid cells in syngeneic tumour immunity. Immunology. 1972 Oct;23(4):615–626. [PMC free article] [PubMed] [Google Scholar]
  6. Evans R., Alexander P. Role of macrophages in tumour immunity. II. Involvement of a macrophage cytophilic factor during syngeneic tumour growth inhibition. Immunology. 1972 Oct;23(4):627–636. [PMC free article] [PubMed] [Google Scholar]
  7. Filkins J. P., Di Luzio N. R. Influence of opsonins and heparin on intravascular carbon clearances after endotoxin. J Reticuloendothel Soc. 1969 Jun;6(3):287–299. [PubMed] [Google Scholar]
  8. Gottlieb A. A. Antigens, RNAs, and macrophages. J Reticuloendothel Soc. 1968 Jun;5(3):270–281. [PubMed] [Google Scholar]
  9. Huber H., Fudenberg H. H. Receptor sites of human monocytes for IgG. Int Arch Allergy Appl Immunol. 1968;34(1):18–31. doi: 10.1159/000230091. [DOI] [PubMed] [Google Scholar]
  10. Kono Y. Rapid production of interferon in bovine leucocyte cultures. Proc Soc Exp Biol Med. 1967 Jan;124(1):155–160. doi: 10.3181/00379727-124-31689. [DOI] [PubMed] [Google Scholar]
  11. Kramer J. J., Granger G. A. The in vitro induction and release of a cell toxin by immune C57B1-6 mouse peritoneal macrophages. Cell Immunol. 1972 Jan;3(1):88–100. doi: 10.1016/0008-8749(72)90229-8. [DOI] [PubMed] [Google Scholar]
  12. Lin H. S. Peritoneal exudate cells. II. Kinetics of appearance of colony-forming cells. J Cell Physiol. 1974 Aug;84(1):159–163. doi: 10.1002/jcp.1040840118. [DOI] [PubMed] [Google Scholar]
  13. Lin H. S., Stewart C. C. Peritoneal exudate cells. I. Growth requirement of cells capable of forming colonies in soft agar. J Cell Physiol. 1974 Jun;83(3):369–378. doi: 10.1002/jcp.1040830307. [DOI] [PubMed] [Google Scholar]
  14. Lin H., Stewart C. C. Colony formation by mouse peritoneal exudate cells in vitro. Nat New Biol. 1973 Jun 6;243(127):176–177. doi: 10.1038/newbio243176a0. [DOI] [PubMed] [Google Scholar]
  15. MACKANESS G. B. THE IMMUNOLOGICAL BASIS OF ACQUIRED CELLULAR RESISTANCE. J Exp Med. 1964 Jul 1;120:105–120. doi: 10.1084/jem.120.1.105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Martin W. J. Immune surveillance directed against depressed cellular and viral alloantigens. Cell Immunol. 1975 Jan;15(1):1–10. doi: 10.1016/0008-8749(75)90159-8. [DOI] [PubMed] [Google Scholar]
  17. McDevitt H. O. The cellular localization of antigen. J Reticuloendothel Soc. 1968 Jun;5(3):256–269. [PubMed] [Google Scholar]
  18. Mitchison N. A. The immunogenic capacity of antigen taken up by peritoneal exudate cells. Immunology. 1969 Jan;16(1):1–14. [PMC free article] [PubMed] [Google Scholar]
  19. Rabinovitch M. Effect of antiserum on the attachment of modified erythrocytes to normal or to trypsinized macrophages. Proc Soc Exp Biol Med. 1968 Feb;127(2):351–355. doi: 10.3181/00379727-127-32688. [DOI] [PubMed] [Google Scholar]
  20. Slonecker C. E. The cellular composition of an acute inflammatory exudate in rats. J Reticuloendothel Soc. 1971 Sep;10(3):269–282. [PubMed] [Google Scholar]
  21. Smith T. J., Wagner R. R. Rabbit macrophage interferons. I. Conditions for biosynthesis by virus-infected and uninfected cells. J Exp Med. 1967 Apr 1;125(4):559–577. doi: 10.1084/jem.125.4.559. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Spector W. G. The granulomatous inflammatory exudate. Int Rev Exp Pathol. 1969;8:1–55. [PubMed] [Google Scholar]
  23. Stubbs M., Kühner A. V., Glass E. A., David J. R., Karnovsky M. L. Metabolic and functonal studies on activated mouse macrophages. J Exp Med. 1973 Feb 1;137(2):537–542. doi: 10.1084/jem.137.2.537. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Uhr J. W., Weissmann G. The sequestration of antigens in lysosomes. J Reticuloendothel Soc. 1968 Jun;5(3):243–255. [PubMed] [Google Scholar]
  25. Uhr J. W., Weissmann G. The sequestration of antigens in lysosomes. J Reticuloendothel Soc. 1968 Jun;5(3):243–255. [PubMed] [Google Scholar]
  26. VAUGHAN R. B. THE DISCRIMINATIVE BEHAVIOR OF RABBIT PHAGOCYTES. Br J Exp Pathol. 1965 Feb;46:71–81. [PMC free article] [PubMed] [Google Scholar]
  27. Virolainen M., Defendi V. Dependence of macrophage growth in vitro upon interaction with other cell types. Wistar Inst Symp Monogr. 1967;7:67–85. [PubMed] [Google Scholar]
  28. Whaley K., Singh H. In vitro studies on the phagocytosis of Staphylococcus aureus by peritoneal macrophages of New Zealand mice. Immunology. 1973 Jan;24(1):25–35. [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES