Abstract
Thymus-dependent protein antigens such as fowl gamma globulin (FGG) and dinitrophenylated-human gamma globulin (DNP-HGG), readily induced tolerance of the B cell in the absence of T cells even when these antigens were not deaggregated. However, when the same doses of antigen were given in the presence of T cells, the B-cell population was shown to be protected from tolerance induction, especially when the antigen was not in a deaggregated form. In this case, there was in fact evidence of a priming effect, manifest in both the B-cell and T-cell populations. The priming effect on the B-cell population was demonstrated by an increased response of mice pretreated with DNP-HGG, upon challenge with DNP conjugated to a heterologous carrier. The priming effect on the T-cell population was evident in a helper effect demonstrated in vitro. However, when euthymic mice which had been pretreated with large doses of FGG or DNP-HGG were challenged with the homologous carrier, the results were different. In this case, there was a profound suppression of the response against the carrier or the hapten on that carrier. Suppressor activity was also demonstrated in vitro and was shown to be sensitive to treatment with anti-theta-serum plus complement. Additionally it was shown that the effector phase of the suppression had a definite nonantigen-specific component. Thus, in pretreated euthymic mice, provided the homologous carrier was present, the response to a heterologous carrier was also suppressed. To account for the observation that nondeaggregated antigens can induce B-cell tolerance in athymic mice, but B-cell priming and T-cell-mediated suppression in euthymic mice, it is proposed that B-cell tolerance occurs when antigen at some critical dose interacts with the B cell in the absence of some second signal. This second signal is normally provided by the macrophage, probably with the assistance of the T cell, and its effect is to divert the result of the interaction of the B cell with antigen towards immunization and away from tolerance induction. When a large dose of an antigen that tends to form aggregates is given to an animal possessing functional T cells, both T-dependent helper and T-dependent suppressor activities are generated, thus accounting for a situation where the B-cell population is immunized, but B-cell activation is suppressed in the presence of the original carrier.
Full Text
The Full Text of this article is available as a PDF (962.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Basten A., Miller J. F., Sprent J., Cheers C. Cell-to-cell interaction in the immune response. X. T-cell-dependent suppression in tolerant mice. J Exp Med. 1974 Jul 1;140(1):199–217. doi: 10.1084/jem.140.1.199. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Borel Y. Induction of immunological tolerance by a hapten (DNP) bound to a non-immunogenic protein carrier. Nat New Biol. 1971 Apr 7;230(14):180–182. doi: 10.1038/newbio230180a0. [DOI] [PubMed] [Google Scholar]
- Dresser D. W., Mitchison N. A. The mechanism of immunological paralysis. Adv Immunol. 1968;8:129–181. doi: 10.1016/s0065-2776(08)60466-6. [DOI] [PubMed] [Google Scholar]
- Dresser D. W., Wortis D. H. Use of an antiglobulin serum to detect cells producing antibody with low haemolytic efficiency. Nature. 1965 Nov 27;208(5013):859–861. doi: 10.1038/208859a0. [DOI] [PubMed] [Google Scholar]
- Dutton R. W. Inhibitory and stimulatory effects of concanavalin A on the response of mouse spleen cell suspensions to antigen. I. Characterization of the inhibitory cell activity. J Exp Med. 1972 Dec 1;136(6):1445–1460. doi: 10.1084/jem.136.6.1445. [DOI] [PMC free article] [PubMed] [Google Scholar]
- FREI P. C., BENACERRAF B., THORBECKE G. J. PHAGOCYTOSIS OF THE ANTIGEN, A CRUCIAL STEP IN THE INDUCTION OF THE PRIMARY RESPONSE. Proc Natl Acad Sci U S A. 1965 Jan;53:20–23. doi: 10.1073/pnas.53.1.20. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Feldmann M., Basten A. Cell interactions in the immune response in vitro. I. Metabolic activities of T cells in a collaborative antibody response. Eur J Immunol. 1972 Jun;2(3):213–224. doi: 10.1002/eji.1830020305. [DOI] [PubMed] [Google Scholar]
- Feldmann M., Easten A. The relationship between antigenic structure and the requirement for thymus-derived cells in the immune response. J Exp Med. 1971 Jul 1;134(1):103–119. doi: 10.1084/jem.134.1.103. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Feldmann M. Induction of immunity and tolerance in vitro by hapten protein conjugates. II. Carrier independence of the response to dinitrophenylated polymerized flagellin. Eur J Immunol. 1972 Apr;2(2):130–137. doi: 10.1002/eji.1830020208. [DOI] [PubMed] [Google Scholar]
- Fidler J. M., Golub E. S. Immunological tolerance to a hapten. I. Induction and maintenance of tolerance to trinitrophenyl with trinitrobenzene sulfonic acid. J Exp Med. 1973 Jan 1;137(1):42–54. doi: 10.1084/jem.137.1.42. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gershon R. K., Gery I., Waksman B. H. Suppressive effects of in vivo immunization on PHA responses in vitro. J Immunol. 1974 Jan;112(1):215–221. [PubMed] [Google Scholar]
- Gershon R. K., Kondo K. Infectious immunological tolerance. Immunology. 1971 Dec;21(6):903–914. [PMC free article] [PubMed] [Google Scholar]
- Gershon R. K. T cell control of antibody production. Contemp Top Immunobiol. 1974;3:1–40. doi: 10.1007/978-1-4684-3045-5_1. [DOI] [PubMed] [Google Scholar]
- Hamilton J. A., Miller J. F. Hapten-specific tolerance: unresponsiveness in the T cell-depleted population. Eur J Immunol. 1973 Jul;3(7):457–460. doi: 10.1002/eji.1830030716. [DOI] [PubMed] [Google Scholar]
- Havas H. F. The effect of the carrier protein on the immune response and on the induction of tolerance in mice to the 2,4-dinitrophenyl determinant. Immunology. 1969 Dec;17(6):819–829. [PMC free article] [PubMed] [Google Scholar]
- Katz D. H., Davie J. M., Paul W. E., Benacerraf B. Carrier function in anti-hapten antibody responses. IV. Experimental conditions for the induction of hapten-specific tolerance or for the stimulation of anti-hapten anamnestic responses by "nonimmunogenic" hapten-polypeptide conjugates. J Exp Med. 1971 Jul 1;134(1):201–223. doi: 10.1084/jem.134.1.201. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kishimoto T., Ishizaka K. Regulation of antibody response in vitro. 8. Multiplicity of soluble factors released from carrier-specific cells. J Immunol. 1974 May;112(5):1685–1697. [PubMed] [Google Scholar]
- Miller J. F., Basten A., Sprent J., Cheers C. Interaction between lymphocytes in immune responses. Cell Immunol. 1971 Oct;2(5):469–495. doi: 10.1016/0008-8749(71)90057-8. [DOI] [PubMed] [Google Scholar]
- Miller J. F., Warner N. L. The immune response of normal, irradiated and thymectomized mice to fowl immunoglobulin G as detected by a hemolytic plaque technique. Int Arch Allergy Appl Immunol. 1971;40(1):59–71. doi: 10.1159/000230395. [DOI] [PubMed] [Google Scholar]
- Okumura K., Tada T. Regulation of homocytotropic antibody formation in the rat. IX. Further characterization of the antigen-specific inhibitory T cell factor in hapten-specific homocytotropic antibody response. J Immunol. 1974 Feb;112(2):783–791. [PubMed] [Google Scholar]
- Rich R. R., Pierce C. W. Biological expressions of lymphocyte activation : I. Effects of phytomitogens on antibody synthesis in vitro. J Exp Med. 1973 Jan 31;137(2):205–223. doi: 10.1084/jem.137.2.205. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schrader J. W. Evidence for the presence in unimmunized mice of two populations of bone marrow derived B lymphocytes, defined by differences in adherence properties. Cell Immunol. 1974 Mar 15;10(3):380–393. doi: 10.1016/0008-8749(74)90130-0. [DOI] [PubMed] [Google Scholar]
- Schrader J. W. Induction of immunological tolerance to a thymus-dependent antigen in the absence of thymus-derived cells. J Exp Med. 1974 May 1;139(5):1303–1316. doi: 10.1084/jem.139.5.1303. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schrader J. W., Nossal G. J. Effector cell blockade. A new mechanism of immune hyporeactivity induced by multivalent antigens. J Exp Med. 1974 Jun 1;139(6):1582–1598. doi: 10.1084/jem.139.6.1582. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schrader J. W. The mechanism of bone marrow-derived (B) lymphocyte activation. I. Early events in antigen-induced triggering in the presence of polymerized flagellin. Eur J Immunol. 1974 Jan;4(1):14–20. doi: 10.1002/eji.1830040105. [DOI] [PubMed] [Google Scholar]
- Sjöberg O. Antigenic competition in vitro of spleen cells subjected to a graft-versus-host reaction. Immunology. 1971 Aug;21(2):351–361. [PMC free article] [PubMed] [Google Scholar]
- Taussig M. J. Antigenic competition. Curr Top Microbiol Immunol. 1973;60:125–174. doi: 10.1007/978-3-642-65502-9_4. [DOI] [PubMed] [Google Scholar]
- Weigle W. O. Immunological unresponsiveness. Adv Immunol. 1973;16:61–122. doi: 10.1016/s0065-2776(08)60296-5. [DOI] [PubMed] [Google Scholar]
