Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1975 May 1;141(5):1221–1226. doi: 10.1084/jem.141.5.1221

The mechanism of action of the C3b inactivator (conglutinogen- activating factor) on its naturally occurring substrate, the major fragment of the third component of complement (C3b)

JD Gitlin, FS Rosen, PJ Lachmann
PMCID: PMC2189781  PMID: 1168693

Abstract

The fixation of the third component of complement (C3) results in many important biological phenomenon, among which are (a) immune adherence (1), (b) enhancement of phagocytosis (2,3), (c) the release of an anaphylatoxin which is a potent releaser of histamine (4), and (d) the feedback activation of the alternative pathway (5,6). The physiological mechanisms involving C3 fixation require the generation of a C3 convertase which may occur by two separate pathways. C3 convertase can be generated, in the form of C42, by the so-called classical pathway of activation or in the form C3b,B by the alternative or properdin pathway (7). In both cases, C3 is converted to C3b by cleavage of a small peptide, C3a. Normal human serum contains an inactivator of activated C3b. This C2b inactivator or conglutinogen-activating factor (KAF) has been shown to inhibit both immune hemolysis and the immune adherence properties of C3b and to cause cleavage of C3b in the fixed and fluid- phase stages (8-11). Although it is known that the C3b inactivator is not depleted during its reaction with C3b and that C3b treated with the C3b inactivator becomes extremely sensitive to proteolytic digestion by trypsin and “trypsin-like” enzymes (9), the exact molecular nature of the action of the C3b inactivator on C3b has not been studied. In an effort to delineate the products of this interaction, purified C3b and C3b inactivator were allowed to react for various specific lengths of time and the products of these reactions were then analyzed.

Full Text

The Full Text of this article is available as a PDF (321.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abramson N., Alper C. A., Lachmann P. J., Rosen F. S., Jandl J. H. Deficiency of C3 inactivator in man. J Immunol. 1971 Jul;107(1):19–27. [PubMed] [Google Scholar]
  2. Alper C. A., Rosen F. S., Lachmann P. J. Inactivator of the third component of complement as an inhibitor in the properdin pathway. Proc Natl Acad Sci U S A. 1972 Oct;69(10):2910–2913. doi: 10.1073/pnas.69.10.2910. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Ballow M., Cochrane C. G. Two anticomplementary factors in cobra venom: hemolysis of guinea pig erythrocytes by one of them. J Immunol. 1969 Nov;103(5):944–952. [PubMed] [Google Scholar]
  4. Brade V., Lee G. D., Nicholson A., Shin H. S., Mayer M. M. The reaction of zymosan with the properdin system in normal and C4-deficienct guinea pig serum. Demonstration of C3- and C5-cleaving multi-unit enzymes, both containing factor B, and acceleration of their formation by the classical complement pathway. J Immunol. 1973 Nov;111(5):1389–1400. [PubMed] [Google Scholar]
  5. Dias da Silva W., Lepow I. H. Anaphylatoxin formation by purified human C'1 esterase. J Immunol. 1965 Dec;95(6):1080–1089. [PubMed] [Google Scholar]
  6. Gigli I., Nelson R. A., Jr Complement dependent immune phagocytosis. I. Requirements for C'1, C'4, C'2, C'3. Exp Cell Res. 1968 Jul;51(1):45–67. doi: 10.1016/0014-4827(68)90158-4. [DOI] [PubMed] [Google Scholar]
  7. Johnston R. B., Jr, Klemperer M. R., Alper C. A., Rosen F. S. The enhancement of bacterial phagocytosis by serum. The role of complement components and two cofactors. J Exp Med. 1969 Jun 1;129(6):1275–1290. doi: 10.1084/jem.129.6.1275. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Lachmann P. J., Müller-Eberhard H. J. The demonstration in human serum of "conglutinogen-activating factor" and its effect on the third component of complement. J Immunol. 1968 Apr;100(4):691–698. [PubMed] [Google Scholar]
  9. Lachmann P. J., Nicol P., Aston W. P. Further studies on the C3b inactivator or conglutinogen activating factor (KAF). Immunochemistry. 1973 Oct;10(10):695–700. doi: 10.1016/0019-2791(73)90213-9. [DOI] [PubMed] [Google Scholar]
  10. Müller-Eberhard H. J., Götze O. C3 proactivator convertase and its mode of action. J Exp Med. 1972 Apr 1;135(4):1003–1008. doi: 10.1084/jem.135.4.1003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. NILSSON U. R., MUELLER-EBERHARD H. J. ISOLATION OF BETA IF-GLOBULIN FROM HUMAN SERUM AND ITS CHARACTERIZATION AS THE FIFTH COMPONENT OF COMPLEMENT. J Exp Med. 1965 Aug 1;122:277–298. doi: 10.1084/jem.122.2.277. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Ruddy S., Austen K. F. C3b inactivator of man. II. Fragments produced by C3b inactivator cleavage of cell-bound or fluid phase C3b. J Immunol. 1971 Sep;107(3):742–750. [PubMed] [Google Scholar]
  13. Tamura N., Nelson R. A., Jr Three naturally-occurring inhibitors of components of complement in guinea pig and rabbit serum. J Immunol. 1967 Sep;99(3):582–589. [PubMed] [Google Scholar]
  14. Weber K., Osborn M. The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis. J Biol Chem. 1969 Aug 25;244(16):4406–4412. [PubMed] [Google Scholar]
  15. Ziegler J. B., Alper C. A., Rosen R. S., Lachmann P. J., Sherington L. Restoration by purified C3b inactivator of complement-mediated function in vivo in a patient with C3b inactivator deficiency. J Clin Invest. 1975 Mar;55(3):668–672. doi: 10.1172/JCI107975. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES