Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1985 Apr;162(1):242–247. doi: 10.1128/jb.162.1.242-247.1985

Amount and chain length of polyphosphates in Escherichia coli depend on cell growth conditions.

N N Rao, M F Roberts, A Torriani
PMCID: PMC218980  PMID: 3884591

Abstract

Anaerobiosis induced an accumulation of polyphosphates (poly Pi) in a phosphate-rich medium by an alkaline-phosphatase constitutive mutant of Escherichia coli. The total poly Pi content was maximum at around 6 h of anaerobic growth. Both trichloroacetic acid- and NaOH-soluble poly Pi were found to be present. The acid-soluble fraction consisted mainly of a linear polymer of about 20 +/- 5 phosphate units, whereas the alkali-extractable poly Pi fraction contained at least four molecular species of higher chain length as determined by gel filtration. The majority of poly Pi extracted at 6 h had lower chain lengths than those extracted from cells incubated for 24 h. In vivo 31P nuclear magnetic resonance spectra of E. coli cells as a function of growth conditions were consistent with the in vitro extract results.

Full text

PDF
242

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BERGERON J. A., SINGER M. Metachromasy: an experimental and theoretical reevaluation. J Biophys Biochem Cytol. 1958 Jul 25;4(4):433–457. doi: 10.1083/jcb.4.4.433. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Cashel M., Lazzarini R. A., Kalbacher B. An improved method for thin-layer chromatography of nucleotide mixtures containing 32P-labelled orthophosphate. J Chromatogr. 1969 Mar 11;40(1):103–109. doi: 10.1016/s0021-9673(01)96624-5. [DOI] [PubMed] [Google Scholar]
  3. Cramer C. L., Vaughn L. E., Davis R. H. Basic amino acids and inorganic polyphosphates in Neurospora crassa: independent regulation of vacuolar pools. J Bacteriol. 1980 Jun;142(3):945–952. doi: 10.1128/jb.142.3.945-952.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. DRYER R. L., TAMMES A. R., ROUTH J. I. The determination of phosphorus and phosphatase with N-phenyl-p-phenylenediamine. J Biol Chem. 1957 Mar;225(1):177–183. [PubMed] [Google Scholar]
  5. Dassa E., Boquet P. L. Is the acid phosphatase of Escherichia coli with pH optimum of 2.5 A polyphosphate depolymerase? FEBS Lett. 1981 Nov 30;135(1):148–150. doi: 10.1016/0014-5793(81)80964-7. [DOI] [PubMed] [Google Scholar]
  6. Griffin J. B., Davidian N. M., Penniall R. Studies of phosphorus metabolism by isolated nuclei. VII. Identification of polyphosphate as a product. J Biol Chem. 1965 Nov;240(11):4427–4434. [PubMed] [Google Scholar]
  7. HAROLD F. M. ACCUMULATION OF INORGANIC POLYPHOSPHATE IN AEROBACTER AEROGENES. I. RELATIONSHIP TO GROWTH AND NUCLEIC ACID SYNTHESIS. J Bacteriol. 1963 Aug;86:216–221. doi: 10.1128/jb.86.2.216-221.1963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Harold F. M. Inorganic polyphosphates in biology: structure, metabolism, and function. Bacteriol Rev. 1966 Dec;30(4):772–794. doi: 10.1128/br.30.4.772-794.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. KATCHMAN B. J., VAN WAZER J. R. The soluble and insoluble polyphosphates of yeast. Biochim Biophys Acta. 1954 Jul;14(3):445–446. doi: 10.1016/0006-3002(54)90211-5. [DOI] [PubMed] [Google Scholar]
  10. KORNBERG A., KORNBERG S. R., SIMMS E. S. Metaphosphate synthesis by an enzyme from Escherichia coli. Biochim Biophys Acta. 1956 Apr;20(1):215–227. doi: 10.1016/0006-3002(56)90280-3. [DOI] [PubMed] [Google Scholar]
  11. KULAEV I. S., BELOZERSKII A. N. Izuchenie pri pomoshchi P32 fiziologicheskoi roli polifosfatov v protsesse razvitiia Aspergillus niger. Biokhimiia. 1957 May-Jun;22(3):587–596. [PubMed] [Google Scholar]
  12. Kulaev I. S. Biochemistry of inorganic polyphosphates. Rev Physiol Biochem Pharmacol. 1975;73:131–158. doi: 10.1007/BFb0034661. [DOI] [PubMed] [Google Scholar]
  13. Kulaev I. S., Shimona O., Bobyk M. A. O biosinteze neorganicheskikh polifosfatov u Neurospora crassa. Biokhimiia. 1968 May-Jun;33(3):419–434. [PubMed] [Google Scholar]
  14. Kulaev I. S., Vagabov V. M. Polyphosphate metabolism in micro-organisms. Adv Microb Physiol. 1983;24:83–171. doi: 10.1016/s0065-2911(08)60385-9. [DOI] [PubMed] [Google Scholar]
  15. LISS E., LANGEN P. [On a high-molecular weight polyphosphate of yeast]. Biochem Z. 1960;333:193–201. [PubMed] [Google Scholar]
  16. MUHAMMED A. Studies on biosynthesis of polymetaphosphate by an enzyme from Corynebacterium xerosis. Biochim Biophys Acta. 1961 Nov 25;54:121–132. doi: 10.1016/0006-3002(61)90945-3. [DOI] [PubMed] [Google Scholar]
  17. Navon G., Ogawa S., Shulman R. G., Yamane T. High-resolution 31P nuclear magnetic resonance studies of metabolism in aerobic Escherichia coli cells. Proc Natl Acad Sci U S A. 1977 Mar;74(3):888–891. doi: 10.1073/pnas.74.3.888. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Nesmeianova M. A., Dmitriev A. D., Kulaev I. S. Vysokomolekuliarnye polifosfaty i fermenty polifosfatnogo obmena v protsesse rosta kul'tury Escherichia coli. Mikrobiologiia. 1973 Mar-Apr;42(2):213–219. [PubMed] [Google Scholar]
  19. Noegel A., Gotschlich E. C. Isolation of a high molecular weight polyphosphate from Neisseria gonorrhoeae. J Exp Med. 1983 Jun 1;157(6):2049–2060. doi: 10.1084/jem.157.6.2049. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. SZYMONA M., OSTROWSKI W. INORGANIC POLYPHOSPHATE GLUCOKINASE OF MYCOBACTERIUM PHLEI. Biochim Biophys Acta. 1964 May 4;85:283–295. doi: 10.1016/0926-6569(64)90249-4. [DOI] [PubMed] [Google Scholar]
  21. TEWARI K. K., KRISHNAN P. S. Further studies on the metachromatic reaction of metaphosphate. Arch Biochem Biophys. 1959 May;82(1):99–106. doi: 10.1016/0003-9861(59)90094-3. [DOI] [PubMed] [Google Scholar]
  22. Thompson J., Torchia D. A. Use of 31P nuclear magnetic resonance spectroscopy and 14C fluorography in studies of glycolysis and regulation of pyruvate kinase in Streptococcus lactis. J Bacteriol. 1984 Jun;158(3):791–800. doi: 10.1128/jb.158.3.791-800.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. WINDER F. G., DENNENY J. M. The metabolism of inorganic polyphosphate in mycobacteria. J Gen Microbiol. 1957 Dec;17(3):573–585. doi: 10.1099/00221287-17-3-573. [DOI] [PubMed] [Google Scholar]
  24. Weimberg R. Polyphosphate levels in nongrowing cells of Saccharomyces mellis as determined by magnesium ion and the phenomenon of "Uberkompensation". J Bacteriol. 1975 Mar;121(3):1122–1130. doi: 10.1128/jb.121.3.1122-1130.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Zuckier G., Ingenito E., Torriani A. Pleiotropic effects of alkaline phosphatase regulatory mutations phoB and phoT on anaerobic growth of and polyphosphate synthesis in Escherichia coli. J Bacteriol. 1980 Aug;143(2):934–941. doi: 10.1128/jb.143.2.934-941.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Zuckier G., Torriani A. Genetic and physiological tests of three phosphate-specific transport mutants of Escherichia coli. J Bacteriol. 1981 Mar;145(3):1249–1256. doi: 10.1128/jb.145.3.1249-1256.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES