Abstract
Binding constants of the dextran-reactive BALB/c mouse IgA myeloma proteins W3129 and QUPC 52 have been determined for each member of the isomaltose series of oligosaccharides and for methyl alphaDglucoside. Protein W3129 has maximum complementarity for isomaltopentaose (IM5) deltaf degrees = 7,180 cal/mol) with 55-60% of the total binding energy directed against methylalphaDglucoside. Protein QUPC 52 gives maximum binding with isomaltohexaose (IM6) (deltaF degrees = -5,340 cal/mol) and has about 70% of its total binding energy for isomaltotriose (IM3), but at most only 5% for isomaltose (IM2) or methyl alphaDglucoside. Protein W3129 precipitates with branched dextrans high in alpha (1 yields 6) linkages and reacts with but does not precipitate a synthetic alpha (1 yields 6)-linked linear dextran. Protein QUPC 52 precipitates both branched and linear dextrans. Thus, the immunodominant group for protein W3129 is mimicked by methyl alphaDglucoside and this protein reacts exclusively at the terminal nonreducing ends of alpha (1 yields 6)-linked dextran chains. Protein QUPC 52 has an immunodominant group which is expressed by IM3 but not smaller oligosaccharides and this protein can react at nonterminal locations along alpha (1 yields 6)- linked dextran chains.Precipitation of linear dextran seems to be a valid although not quantitative assay for antidextrans with nonterminal specificity. Quantitative precipitin reactions with branched and linear dextrans suggest that alpha (1 yields 6)-specific human antidextrans are mixtures of molecules having terminal and nonterminal specificities and that the fraction of each type can vary among individuals. Rabbit antisera against IM3 or IM6 coupled to bovine serum albumin also appear to contain antibodies with nonterminal specificity for dextran chains although a large fraction has terminal specificity. Low molecular weight clinical dextran N-150N (congruent to 60,000) reacted more like linear dextran than like its parent native-branched dextran B512. This is thought to result from an abundance of nonterminal determinants in clinical dextran N-150N but a very small number of functional terminal determinants per molecule. An appreciation of terminal and nonterminal specificities and of the different immunodominant structures in isomaltosyl chains has proven to be of a great value in understanding the immunochemical reactions of dextrans. Moreover, certain previous findings with fructosan-reactive mouse myeloma proteins and human antilevans (55, 84) also suggest terminal and nonterminal specificities for levan chains.
Full Text
The Full Text of this article is available as a PDF (1.8 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- ALLEN P. Z., KABAT E. A. Studies on the capacity of some polysaccharides to elicit antibody formation in man. J Exp Med. 1957 May 1;105(5):383–394. doi: 10.1084/jem.105.5.383. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Arakatsu Y., Ashwell G., Kabat E. A. Immunochemical studies on dextrans. V. Specificity and cross-reactivity with dextrans of the antibodies formed in rabbits to isomaltonic and isomaltotrionic acids coupled to bovine serum albumin. J Immunol. 1966 Dec;97(6):858–866. [PubMed] [Google Scholar]
- Bourne E. J., Sidebotham R. L., Weigel H. Studies on dextrans and dextranases. X. Types and percentages of secondary linkages in the dextrans elaborated by Leuconostoc mesenteroides NRRL B-1299. Carbohydr Res. 1972 Apr;22(1):13–22. doi: 10.1016/s0008-6215(00)85721-3. [DOI] [PubMed] [Google Scholar]
- Burger M. M. Teichoic acids: antigenic determinants, chain separation, and their location in the cell wall. Proc Natl Acad Sci U S A. 1966 Sep;56(3):910–917. doi: 10.1073/pnas.56.3.910. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cisar J., Kabat E. A., Liao J., Potter M. Immunochemical studies on mouse myeloma proteins reactive with dextrans or with fructosans and on human antilevans. J Exp Med. 1974 Jan 1;139(1):159–179. doi: 10.1084/jem.139.1.159. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Corneil I., Wofsy L. Specific purification of equine anti-SII antibodies by precipitation with a hemocyanin-glucuronide conjugate. Immunochemistry. 1967 May;4(3):183–189. doi: 10.1016/0019-2791(67)90127-9. [DOI] [PubMed] [Google Scholar]
- GELZER J., KABAT E. A. SPECIFIC FRACTIONATION OF HUMAN ANTI-DEXTRAN ANTIBODIES. 3. FRACTIONATION OF ANTI-DEXTRAN BY SEQUENTIAL EXTRACTION WITH OLIGOSACCHRIDES OF INCREASING CHAIN LENGTH AND ATTEMPTS AT SUBFRACTIONATION. Immunochemistry. 1964 Dec;1:303–316. [PubMed] [Google Scholar]
- GELZER J., KABAT E. A. SPECIFIC FRACTIONATION OF HUMAN ANTIDEXTRAN ANTIBODIES. II. ASSAY OF HUMAN ANTIDEXTRAN SERA AND SPECIFICALLY FRACTIONATED PURIFIED ANTIBODIES BY MICROCOMPLEMENT FIXATION AND COMPLEMENT FIXATION INHIBITION TECHNIQUES. J Exp Med. 1964 Jan 1;119:983–995. doi: 10.1084/jem.119.6.983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- GOODMAN J. W., KABAT E. A. Immunochemical studies on cross-reactions of antipneumococcal sera. I. Cross-reactions of types II and XX antipneumococcal sera with dextrans and of type II antipneumococcal serum with glycogen and Friedlaender type B polysaccharide. J Immunol. 1960 Apr;84:333–346. [PubMed] [Google Scholar]
- Goebel W. F., Avery O. T., Babers F. H. CHEMO-IMMUNOLOGICAL STUDIES ON CONJUGATED CARBOHYDRATE-PROTEINS : IX. THE SPECIFICITY OF ANTIGENS PREPARED BY COMBINING THEp-AMINOPHENOL GLYCOSIDES OF DISACCHARIDES WITH PROTEIN. J Exp Med. 1934 Oct 31;60(5):599–617. doi: 10.1084/jem.60.5.599. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goldstein I. J., Poretz R. D., So L. L., Yang Y. Protein--carbohydrate interaction. XVI. The interaction of concanavalin A with dextrans from L. mesenteroides B-512-F, L. mesenteroides 9birmingham), Streptococcus bovis, and a synthetic alpha-(1--6)-D-glucan. Arch Biochem Biophys. 1968 Sep 20;127(1):787–794. doi: 10.1016/0003-9861(68)90290-7. [DOI] [PubMed] [Google Scholar]
- Goodman J. W. Immunochemical specificity: recent conceptual advances. Immunochemistry. 1969 Jan;6(1):139–149. doi: 10.1016/0019-2791(69)90185-2. [DOI] [PubMed] [Google Scholar]
- Grey H. M., Hirst J. W., Cohn M. A new mouse immunoglobulin: IgG3. J Exp Med. 1971 Feb 1;133(2):289–304. doi: 10.1084/jem.133.2.289. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HEIDELBERGER M., REBERS P. A. Immunochemistry of the pneumococcal types II. V. and VI. I. The relation of Type VI to Type II and other correlations between chemical constitution and precipitation in antisera to type VI. J Bacteriol. 1960 Aug;80:145–153. doi: 10.1128/jb.80.2.145-153.1960. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hammarström S., Kabat E. A. Studies on specificity and binding properties of the blood group A reactive hemagglutinin from Helix pomatia. Biochemistry. 1971 Apr 27;10(9):1684–1692. doi: 10.1021/bi00785a028. [DOI] [PubMed] [Google Scholar]
- Harisdangkul V., Kabat E. A., McDonough R. J., Sigel M. M. A protein in normal nurse shark serum which reacts specifically with fructosans. I. Purification and immunochemical characterization. J Immunol. 1972 May;108(5):1244–1258. [PubMed] [Google Scholar]
- Harisdangkul V., Kabat E. A. Studies on human antibodies. IX. Interaction of 1-(m-nitrophenyl)-flavazoles of isomaltose oligosaccharides with purified antidextrans: quantitative hapten-inhibition and fluorescence quenching studies. J Immunol. 1972 May;108(5):1232–1243. [PubMed] [Google Scholar]
- Hehre E. J., Sugg J. Y. SEROLOGICALLY REACTIVE POLYSACCHARIDES PRODUCED THROUGH THE ACTION OF BACTERIAL ENZYMES : I. DEXTRAN OF LEUCONOSTOC MESENTEROIDES FROM SUCROSE. J Exp Med. 1942 Mar 1;75(3):339–353. doi: 10.1084/jem.75.3.339. [DOI] [PMC free article] [PubMed] [Google Scholar]
- JUERGENS W. G., SANDERSON A. R., STROMINGER J. L. Chemical basis for an immunological specificity of a strain of Staphylococcus aureus. J Exp Med. 1963 Jun 1;117:925–935. doi: 10.1084/jem.117.6.925. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jolley M. E., Glaudemans C. P., Rudikoff S., Potter M. Structural requirements for the binding of derivatives of D-galactose to two homogeneous murine immunoglobulins. Biochemistry. 1974 Jul 16;13(15):3179–3184. doi: 10.1021/bi00712a028. [DOI] [PubMed] [Google Scholar]
- Jolley M. E., Rudikoff S., Potter M., Glaudemans C. P. Spectral changes on binding of oligosaccharides to murine immunoglobulin A myeloma proteins. Biochemistry. 1973 Jul 31;12(16):3039–3044. doi: 10.1021/bi00740a015. [DOI] [PubMed] [Google Scholar]
- KABAT E. A., BERG D. Dextran; an antigen in man. J Immunol. 1953 Jun;70(6):514–532. [PubMed] [Google Scholar]
- KABAT E. A., BEZER A. E. The effect of variation in molecular weight on the antigenicity of dextran in man. Arch Biochem Biophys. 1958 Dec;78(2):306–318. doi: 10.1016/0003-9861(58)90354-0. [DOI] [PubMed] [Google Scholar]
- KABAT E. A. Heterogeneity in extent of the combining regions of human antidextran. J Immunol. 1956 Dec;77(6):377–385. [PubMed] [Google Scholar]
- KABAT E. A. Immunochemical contributions to the elucidation of dextran structure. Bull Soc Chim Biol (Paris) 1960;42:1549–1568. [PubMed] [Google Scholar]
- KABAT E. A. Size and heterogeneity of the combining sites on an antibody molecule. J Cell Physiol Suppl. 1957 Dec;50(Suppl 1):79–102. doi: 10.1002/jcp.1030500406. [DOI] [PubMed] [Google Scholar]
- KABAT E. A. The upper limit for the size of the human antidextran combining site. J Immunol. 1960 Jan;84:82–85. [PubMed] [Google Scholar]
- KRAUSE R. M., McCARTY M. Studies on the chemical structure of the streptococcal cell wall. II. The composition of group C cell walls and chemical basis for serologic specificity of the carbohydrate moiety. J Exp Med. 1962 Jan 1;115:49–62. doi: 10.1084/jem.115.1.49. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kabat E. A. The nature of an antigenic determinant. J Immunol. 1966 Jul;97(1):1–11. [PubMed] [Google Scholar]
- Knox K. W., Wicken A. J. Immunological properties of teichoic acids. Bacteriol Rev. 1973 Jun;37(2):215–257. doi: 10.1128/br.37.2.215-257.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LUDERITZ O., WESTPHAL O., STAUB A. M., LE MINOR L. Preparation and immunological properties of an artificial antigen with colitose (3-deoxy-1-fucose) as the determinant group. Nature. 1960 Nov 12;188:556–558. doi: 10.1038/188556a0. [DOI] [PubMed] [Google Scholar]
- Larm O., Lindberg B., Svensson S. Studies on the length of the side chains of the dextran elaborated by Leuconostoc mesenteroides NRRL B-512. Carbohydr Res. 1971 Nov;20(1):39–48. doi: 10.1016/s0008-6215(00)84947-2. [DOI] [PubMed] [Google Scholar]
- Leon M. A., Young N. M., McIntire K. R. Immunochemical studies of the reaction between a mouse myeloma macroglobulin and dextrans. Biochemistry. 1970 Feb 17;9(4):1023–1030. doi: 10.1021/bi00806a043. [DOI] [PubMed] [Google Scholar]
- Lloyd K. O., Kabat E. A., Layug E. J., Gruezo F. Immunochemical studies on blood groups. XXXIV. Structures of some oligosaccharides produced by alkaline degradation of blood group A, B, and H substances. Biochemistry. 1966 May;5(5):1489–1501. doi: 10.1021/bi00869a007. [DOI] [PubMed] [Google Scholar]
- Lloyd K. O., Kabat E. A., Rosenfield R. E. Immunochemical studies on blood groups. XXXV. The activity of fucose-containing oligosaccharides isolated from blood group A, B, and H substances by alkaline degradation. Biochemistry. 1966 May;5(5):1502–1507. doi: 10.1021/bi00869a008. [DOI] [PubMed] [Google Scholar]
- Lundblad A., Steller R., Kabat E. A., Hirst J. W., Weigert M. G., Cohn M. Immunochemical studies on mouse myeloma proteins with specificity for dextran or for levan. Immunochemistry. 1972 May;9(5):535–544. doi: 10.1016/0019-2791(72)90063-8. [DOI] [PubMed] [Google Scholar]
- Lüderitz O., Staub A. M., Westphal O. Immunochemistry of O and R antigens of Salmonella and related Enterobacteriaceae. Bacteriol Rev. 1966 Mar;30(1):192–255. doi: 10.1128/br.30.1.192-255.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MAGE R. G., KABAT E. A. IMMUNOCHEMICAL STUDIES ON DEXTRANS. III. THE SPECIFICITIES OF RABBIT ANTIDEXTRANS. FURTHER FINDINGS ON ANTIDEXTRANS WITH 1,2- AND 1,6-SPECIFICITIES. J Immunol. 1963 Nov;91:633–640. [PubMed] [Google Scholar]
- MAGE R. G., KABAT E. A. THE COMBINING REGIONS OF THE TYPE III PNEUMOCOCCUS POLYSACCHARIDE AND HOMOLOGOUS ANTIBODY. Biochemistry. 1963 Nov-Dec;2:1278–1288. doi: 10.1021/bi00906a019. [DOI] [PubMed] [Google Scholar]
- MCCARTY M., MORSE S. I. CELL WALL ANTIGENS OF GRAM-POSITIVE BACTERIA. Adv Immunol. 1964;27:249–286. doi: 10.1016/s0065-2776(08)60709-9. [DOI] [PubMed] [Google Scholar]
- McCARTY M. Further studies on the chemical basis for serological specificity of Group A streptococcal carbohydrate. J Exp Med. 1958 Sep 1;108(3):311–323. doi: 10.1084/jem.108.3.311. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McCARTY M. The occurrence of polyglycerophosphate as an antigenic component of various gram-positive bacterial species. J Exp Med. 1959 Apr 1;109(4):361–378. doi: 10.1084/jem.109.4.361. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moreno C., Kabat E. A. Studies on human antibodies. 8. Properties and association constants of human antibodies to blood group A substance purified with insoluble specific adsorbents and fractionally fluted with mono- and oligosaccharide. J Exp Med. 1969 May 1;129(5):871–896. doi: 10.1084/jem.129.5.871. [DOI] [PMC free article] [PubMed] [Google Scholar]
- NATHENSON S. G., STROMINGER J. L. Enzymatic synthesis and immunochemistry of N-acetylglucosaminylribitol linkages in the teichoic acids of Staphylococcus aureus stains. J Biol Chem. 1962 Dec;237:3839–3841. [PubMed] [Google Scholar]
- NISONOFF A., PRESSMAN D. Heterogeneity of antibody sites in their relative combining affinities for structurally related haptens. J Immunol. 1958 Aug;81(2):126–135. [PubMed] [Google Scholar]
- Outschoorn I. M., Ashwell G., Gruezo F., Kabat E. A. Immunochemical studies on dextrans. 8. Specificity and cross-reactivity with dextrans of the antibodies formed in rabbits to isomaltohexaonic acid coupled to bovine serum albumin. J Immunol. 1974 Sep;113(3):896–903. [PubMed] [Google Scholar]
- Potter M., Mushinski E. B., Glaudemans C. P. Antigen-binding IgA myeloma proteins in mice: specificities to antigens containing -D 1 leads to 6 linked galactose side chains and a protein antigen in wheat. J Immunol. 1972 Feb;108(2):295–300. [PubMed] [Google Scholar]
- Richter W. Cross-reactivity of synthetic linear dextran with anti-B512 dextran. Viewpoints on the nature of the antigenic determinants of dextran. Int Arch Allergy Appl Immunol. 1974;46(3):438–447. doi: 10.1159/000231147. [DOI] [PubMed] [Google Scholar]
- SCHIFFMAN G., KABAT E. A., THOMPSON W. IMMUNOCHEMICAL STUDIES ON BLOOD GROUPS. XXX. CLEAVAGE OF A, B, AND H BLOOD-GROUP SUBSTANCES BY ALKALI. Biochemistry. 1964 Jan;3:113–120. doi: 10.1021/bi00889a018. [DOI] [PubMed] [Google Scholar]
- SCHLOSSMAN S. F., KABAT E. A. Specific fractionation of a population of antidextran molecules with combining sites of various sizes. J Exp Med. 1962 Oct 1;116:535–552. doi: 10.1084/jem.116.4.535. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Siddiqui B., Hakomori S. A revised structure for the Forssman glycolipid hapten. J Biol Chem. 1971 Sep 25;246(18):5766–5769. [PubMed] [Google Scholar]
- Simmons D. A. Immunochemistry of Shigella flexneri O-antigens: a study of structural and genetic aspects of the biosynthesis of cell-surface antigens. Bacteriol Rev. 1971 Jun;35(2):117–148. doi: 10.1128/br.35.2.117-148.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Simmons D. A. Stereochemical aspects of antigenic specificity in polysaccharide determinants. Eur J Biochem. 1971 Jan 1;18(1):53–58. doi: 10.1111/j.1432-1033.1971.tb01213.x. [DOI] [PubMed] [Google Scholar]
- TORII M., KABAT E. A., BEZER A. E. SEPARATION OF TEICHOIC ACID OF STAPHYLOCOCCUS AUREUS INTO TWO IMMUNOLOGICALLY DISTINCT SPECIFIC POLYSACCHARIDES WITH ALPHA- AND BETA-N-ACETYLGLUCOSAMINYL LINKAGES RESPECTIVELY. ANTIGENICITY OF THEICHOIC ACIDS IN MAN. J Exp Med. 1964 Jul 1;120:13–29. doi: 10.1084/jem.120.1.13. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Torii M., Kabat E. A., Weigel H. Immunochemical studies on dextrans. IV. Further characterization of the determinant groups on various dextrans involved in their reactions with the homologous human antidextrans. J Immunol. 1966 May;96(5):797–805. [PubMed] [Google Scholar]
- UCHIDA T., ROBBINS P. W., LURIA S. E. ANALYSIS OF THE SEROLOGIC DETERMINANT GROUPS OF THE SALMONELLA E-GROUP O-ANTIGENS. Biochemistry. 1963 Jul-Aug;2:663–668. doi: 10.1021/bi00904a008. [DOI] [PubMed] [Google Scholar]
- Weigert M., Raschke W. C., Carson D., Cohn M. Immunochemical analysis of the idiotypes of mouse myeloma proteins with specificity for levan or dextran. J Exp Med. 1974 Jan 1;139(1):137–147. doi: 10.1084/jem.139.1.137. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Young N. M., Jocius I. B., Leon M. A. Binding properties of a mouse immunoglobulin M myeloma protein with carbohydrate specificity. Biochemistry. 1971 Aug 31;10(18):3457–3460. doi: 10.1021/bi00794a022. [DOI] [PubMed] [Google Scholar]
- Yount W. J., Dorner M. M., Kunkel H. G., Kabat E. A. Studies on human antibodies. VI. Selective variations in subgroup composition and genetic markers. J Exp Med. 1968 Mar 1;127(3):633–646. doi: 10.1084/jem.127.3.633. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zolla S., Goodman J. W. Immunochemical studies on cross-reactions of antipneumococcal sera-V. Cross-reactions of horse antipneumococcal type II serum with E. coli M-II polysaccharide, dextran and hemocyanin-ortho-azophenyl-beta-glucuronide. Immunochemistry. 1967 May;4(3):135–142. doi: 10.1016/0019-2791(67)90122-x. [DOI] [PubMed] [Google Scholar]