Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1975 Oct 1;142(4):974–988. doi: 10.1084/jem.142.4.974

Immunological and physiological characteristics of the rapid immune hemolysis of neuraminidase-treated sheep red cells produced by fresh guinea pig serum

PMCID: PMC2189934  PMID: 1185109

Abstract

The rapid hemolysis by fresh guinea pig serum known to occur with neuraminidase-treated sheep red cells has been investigated with respect to the immunological and physiological properties of the lytic process. The following observations were made: (a) The susceptibility to hemolysis is directly proportional to the amounts of neuraminic acid enzymatically released from the cell surface. Complement lysis is mediated through binding of an IgM antibody protein to membranes of neuraminidase-treated cells. (b) Hemolysis is relatively temperature- independent above about 28 degrees C but below which a decrease in the hemolysis rate occurs. Arrhenius activation energies above and below the transition temperature were therefore found to be different. (c) Colloid osmotic swelling of neuraminidase-treated high potassium sheep red cells with a chloride ion concentration ratio near unity suspended in high potassium medium could not be prevented by sucrose. Hence, colloid osmotic swelling before lysis must be due to the entrance of sucrose and water since sucrose was the only external solute not at equilibrium. (d) From the rate of swelling and the apparent flux of sucrose under nonsteady state conditions an experimental permeability coefficient (P) for sucrose of 3-10(-8) cm-s-1 was computed. Comparison with a theoretical P of 4-10(-6) cm-s-1 for sucrose freely permeating through a single, hypothetical membrane lesion per cell of 60 A effective diameter indicates a membrane lesion which permits the passage of solutes larger than cations, but clearly constrains the free diffusion of sucrose.

Full Text

The Full Text of this article is available as a PDF (876.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ARQUILLA E. R., HAMASHIGE S., HAMLIN J., MILLER A. INTERFERENCE WITH IMMUNE HEMOLYSIS BY GLYCOPROTEIN ANTIGENS. J Exp Med. 1964 Nov 1;120:841–856. doi: 10.1084/jem.120.5.841. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Cass A., Dalmark M. Equilibrium dialysis of ions in nystatin-treated red cells. Nat New Biol. 1973 Jul 11;244(132):47–49. doi: 10.1038/newbio244047a0. [DOI] [PubMed] [Google Scholar]
  3. Codington J. F., Sanford B. H., Jeanloz R. W. Glycoprotein coat of the TA 3 cell. I. Removal of carbohydrate and protein material from viable cells. J Natl Cancer Inst. 1970 Oct;45(4):637–647. [PubMed] [Google Scholar]
  4. DALMASSO A. P., MUELLER-EBERHARD H. J. INTERACTION OF AUTOLOGOUS COMPLEMENT WITH RED CELLS IN THE ABSENCE OF ANTIBODY. Proc Soc Exp Biol Med. 1964 Dec;117:643–650. doi: 10.3181/00379727-117-29658. [DOI] [PubMed] [Google Scholar]
  5. Dalmark M., Wieth J. O. Chloride and sodium permeabilities of human red cells. Biochim Biophys Acta. 1970 Dec 1;219(2):525–527. doi: 10.1016/0005-2736(70)90239-7. [DOI] [PubMed] [Google Scholar]
  6. Dalmark M., Wieth J. O. Temperature dependence of chloride, bromide, iodide, thiocyanate and salicylate transport in human red cells. J Physiol. 1972 Aug;224(3):583–610. doi: 10.1113/jphysiol.1972.sp009914. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. EYLAR E. H., MADOFF M. A., BRODY O. V., ONCLEY J. L. The contribution of sialic acid to the surface charge of the erythrocyte. J Biol Chem. 1962 Jun;237:1992–2000. [PubMed] [Google Scholar]
  8. GOOD W. The haemolysis of human erythrocytes in relation to the lattice structure of water. V. Osmotic haemolysis in solutions of electroytes. Biochim Biophys Acta. 1961 Nov 11;53:549–556. doi: 10.1016/0006-3002(61)90214-1. [DOI] [PubMed] [Google Scholar]
  9. GOOD W. The haemolysis of human erythrocytes in relation to the lattice structure of water. VI. Osmotic haemolysis in solution of non-electrolytes. Biochim Biophys Acta. 1962 Feb 12;57:104–110. doi: 10.1016/0006-3002(62)91084-3. [DOI] [PubMed] [Google Scholar]
  10. GREEN H., BARROW P., GOLDBERG B. Effect of antibody and complement on permeability control in ascites tumor cells and erythrocytes. J Exp Med. 1959 Nov 1;110:699–713. doi: 10.1084/jem.110.5.699. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Grothaus E. A., Flye M. W., Yunis E., Amos D. B. Human lymphocyte antigen reactivity modified by neuraminidase. Science. 1971 Aug 6;173(3996):542–544. doi: 10.1126/science.173.3996.542. [DOI] [PubMed] [Google Scholar]
  12. Gunn R. B., Dalmark M., Tosteson D. C., Wieth J. O. Characteristics of chloride transport in human red blood cells. J Gen Physiol. 1973 Feb;61(2):185–206. doi: 10.1085/jgp.61.2.185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hammer D. K., Kickhöfen B., Henning G. Molecular classes and properties of antibodies in cattle serum and colostrum synthesized during the primary and secondary response to protein antigens. Eur J Biochem. 1968 Nov;6(3):443–454. doi: 10.1111/j.1432-1033.1968.tb00466.x. [DOI] [PubMed] [Google Scholar]
  14. Henney C. S. Estimation of the size of a T-cell-induced lytic lesion. Nature. 1974 May 31;249(456):456–458. doi: 10.1038/249456a0. [DOI] [PubMed] [Google Scholar]
  15. Humphrey J. H., Dourmashkin R. R. The lesions in cell membranes caused by complement. Adv Immunol. 1969;11:75–115. doi: 10.1016/s0065-2776(08)60478-2. [DOI] [PubMed] [Google Scholar]
  16. Iles G. H., Seeman P., Naylor D., Cinader B. Membrane lesions in immune lysis: surface rings, globule aggregates and transient openings. J Cell Biol. 1973 Feb;56(2):528–539. doi: 10.1083/jcb.56.2.528. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Jay A. W., Burton A. C. Direct measurement of potential difference across the human red blood cell membrane. Biophys J. 1969 Feb;9(2):115–121. doi: 10.1016/S0006-3495(69)86372-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  19. Lassen U. V., Sten-Knudsen O. Direct measurements of membrane potential and membrane resistance of human red cells. J Physiol. 1968 Apr;195(3):681–696. doi: 10.1113/jphysiol.1968.sp008482. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Lauf P. K. Antigen-antibody reactions and cation transport in biomembranes: immunophysiological aspects. Biochim Biophys Acta. 1975 Jun 30;415(2):173–229. doi: 10.1016/0304-4157(75)90002-7. [DOI] [PubMed] [Google Scholar]
  21. Martz E., Burakoff S. J., Benacerraf B. Interruption of the sequential release of small and large molecules from tumor cells by low temperature during cytolysis mediated by immune T-cells or complement. Proc Natl Acad Sci U S A. 1974 Jan;71(1):177–181. doi: 10.1073/pnas.71.1.177. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Mayer M. M. Mechanism of cytolysis by complement. Proc Natl Acad Sci U S A. 1972 Oct;69(10):2954–2958. doi: 10.1073/pnas.69.10.2954. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. McQuiddy P., Lilien J. E. The binding of exogenously added neuraminidase to cells and tissues in culture. Biochim Biophys Acta. 1973 Feb 16;291(3):774–779. doi: 10.1016/0005-2736(73)90480-x. [DOI] [PubMed] [Google Scholar]
  24. RENKIN E. M. Filtration, diffusion, and molecular sieving through porous cellulose membranes. J Gen Physiol. 1954 Nov 20;38(2):225–243. [PMC free article] [PubMed] [Google Scholar]
  25. Rosenberg S. A., Einstein A. B., Jr Sialic acids on the plasma membrane of cultured human lymphoid cells. Chemical aspects and biosynthesis. J Cell Biol. 1972 May;53(2):466–473. doi: 10.1083/jcb.53.2.466. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Rosenberg S. A., Rogentine G. N., Jr Natural human antibodies to "hidden" membrane components. Nat New Biol. 1972 Oct 18;239(94):203–204. doi: 10.1038/newbio239203a0. [DOI] [PubMed] [Google Scholar]
  27. SEARS D. A., WEED R. I., SWISHER S. N. DIFFERENCES IN THE MECHANISM OF IN VITRO IMMUNE HEMOLYSIS RELATED TO ANTIBODY SPECIFICITY. J Clin Invest. 1964 May;43:975–985. doi: 10.1172/JCI104983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Sachtleben P., Gsell R., Mehrishi J. N. Neuraminidase and anti-neuraminidase serum: effect on the cell surface properties. Vox Sang. 1973 Dec;25(6):519–528. doi: 10.1111/j.1423-0410.1973.tb03546.x. [DOI] [PubMed] [Google Scholar]
  29. Seeman P. Ultrastructure of membrane lesions in immune lysis, osmotic lysis and drug-induced lysis. Fed Proc. 1974 Oct;33(10):2116–2124. [PubMed] [Google Scholar]
  30. Simmons R. L., Rios A. Differential effect of neuraminidase on the immunogenicity of viral associated and private antigens of mammary carcinomas. J Immunol. 1973 Dec;111(6):1820–1825. [PubMed] [Google Scholar]
  31. Uhlenbruck G., Pardoe G. I., Bird G. W. On the specificity of lectins with a broad agglutination spectrum. II. Studies on the nature of the T-antigen and the specific receptors for the lectin of Arachis hypogoea (ground-nut). Z Immunitatsforsch Allerg Klin Immunol. 1969 Nov;138(5):423–433. [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES