Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1975 Oct 1;142(4):928–935. doi: 10.1084/jem.142.4.928

Collaboration of allogeneic T and B lymphocytes in the primary antibody response to sheep erythrocytes in vitro

PMCID: PMC2189941  PMID: 52686

Abstract

This study provides a direct quantitative comparison of the helper effects of allogeneic and syngeneic rat T cells in the production of direct SRBC plaque-forming cell (PFC) responses by B cells in culture. In syngeneic T-B combinations, log-log plots of the number of PFC generated after 5.5 days in culture vs. the number of T cells employed as helpers showed a linear response between 10(4) and 2.5 times 10(5) T cells added. Allogeneic T-B combinations, in which the T cells possess the capacity for reactivity to major alloantigens of the B-cell donor, showed a different dose/response relationship in which PFC responses were decreased at high T/B ratios and augmented at low T/B rations. In this system responses were detected with as few as 10(3) allogeneic T cells. Use of negatively selected allogeneic T populations, specifically depleted of mixed lymphocyte interaction (MLI) and graft- vs-host reactivity for B-cell alloantigens, as helpers gave dose/response curves quantitatively identical to responses with syngeneic T-B combinations and also with F1 T-cell parental B-cell combinations. These data indicate that rat T and B cells need not share a major histocompatibility complex haplotype in order to collaborate effectively in a primary direct PFC response to SRBC in culture. In addition, the PFC response required the combinaed presence of T and B cells as well as antigen in the cultures, a finding consistent with the two signal model of B-cell activation. Finally, the dose/response data obtained suggest the possibility that although SRBC antigen is required in the cultures helper activity with low numbers of normal allogeneic T cells may not depend on T cells having specificity for this antigen.

Full Text

The Full Text of this article is available as a PDF (472.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bechtol K. B., Wegmann T. G., Freed J. H., Grumet F. C., Chesebro B. W., Herzenberg L. A., McDevitt H. O. Genetic control of the immune response to (T,G)-A--L in C3H in equilibrium C57 tetraparental mice. Cell Immunol. 1974 Aug;13(2):264–277. doi: 10.1016/0008-8749(74)90244-5. [DOI] [PubMed] [Google Scholar]
  2. Bretscher P. A. The two signal model for b cell induction. Transplant Rev. 1975;23:37–48. doi: 10.1111/j.1600-065x.1975.tb00147.x. [DOI] [PubMed] [Google Scholar]
  3. Claman H. N., Chaperon E. A., Triplett R. F. Thymus-marrow cell combinations. Synergism in antibody production. Proc Soc Exp Biol Med. 1966 Aug-Sep;122(4):1167–1171. doi: 10.3181/00379727-122-31353. [DOI] [PubMed] [Google Scholar]
  4. Coutinho A. The theory of the 'one nonspecific signal' model for b cell activation. Transplant Rev. 1975;23:49–65. doi: 10.1111/j.1600-065x.1975.tb00148.x. [DOI] [PubMed] [Google Scholar]
  5. Ford W. L., Atkins R. C. The proportion of lymphocytes capable of recognizing strong transplantation antigens in vivo. Adv Exp Med Biol. 1973;29(0):255–262. doi: 10.1007/978-1-4615-9017-0_37. [DOI] [PubMed] [Google Scholar]
  6. Ford W. L., Burr W., Simonsen M. A lymph node weight assay for the graft-versus-host activity of rat lymphoid cells. Transplantation. 1970 Sep;10(3):258–266. doi: 10.1097/00007890-197009000-00007. [DOI] [PubMed] [Google Scholar]
  7. Hamaoka T., Osborne D. P., Jr, Katz D. H. Cell interactions between histoincompatible T and B lymphocytes. I. Allogeneic effect by irradiated host T cells on adoptively transferred histoincompatible B lymphocytes. J Exp Med. 1973 Jun 1;137(6):1393–1404. doi: 10.1084/jem.137.6.1393. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Howard J. C., Scott D. W. The identification of sera distinguishing marrow-derived and thymus-derived lymphocytes in the rat thoracic duct. Immunology. 1974 Nov;27(5):903–922. [PMC free article] [PubMed] [Google Scholar]
  9. Howard J. C. The life-span and recirculation of marrow-derived small lymphocytes from the rat thoracic duct. J Exp Med. 1972 Feb 1;135(2):185–199. doi: 10.1084/jem.135.2.185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Katz D. H., Graves M., Dorf M. E., Dimuzio H., Benacerraf B. Cell interactions between histoincompatible T and B lymphocytes. VII. Cooperative responses between lymphocytes are controlled by genes in the I region of the H-2 complex. J Exp Med. 1975 Jan 1;141(1):263–268. doi: 10.1084/jem.141.1.263. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Katz D. H., Hamaoka T., Benacerraf B. Cell interactions between histoincompatible T and B lymphocytes. II. Failure of physiologic cooperative interactions between T and B lymphocytes from allogeneic donor strains in humoral response to hapten-protein conjugates. J Exp Med. 1973 Jun 1;137(6):1405–1418. doi: 10.1084/jem.137.6.1405. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Katz D. H., Hamaoka T., Dorf M. E., Benacerraf B. Cell interactions between histoincompatible T and B lymphocytes. The H-2 gene complex determines successful physiologic lymphocyte interactions. Proc Natl Acad Sci U S A. 1973 Sep;70(9):2624–2628. doi: 10.1073/pnas.70.9.2624. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kindred B., Shreffler D. C. H-2 dependence of co-operation between T and B cells in vivo. J Immunol. 1972 Nov;109(5):940–943. [PubMed] [Google Scholar]
  14. Miller J. F., Mitchell G. F. Thymus and antigen-reactive cells. Transplant Rev. 1969;1:3–42. doi: 10.1111/j.1600-065x.1969.tb00135.x. [DOI] [PubMed] [Google Scholar]
  15. Mishell R. I., Dutton R. W. Immunization of normal mouse spleen cell suspensions in vitro. Science. 1966 Aug 26;153(3739):1004–1006. doi: 10.1126/science.153.3739.1004. [DOI] [PubMed] [Google Scholar]
  16. Schimpl A., Wecker E. Replacement of T-cell function by a T-cell product. Nat New Biol. 1972 May 3;237(70):15–17. doi: 10.1038/newbio237015a0. [DOI] [PubMed] [Google Scholar]
  17. Taussig J., Mozes E., Isac R. Antigen-specific thymus cell factors in the genetic control of the immune response to poly-(tyrosyl, glutamyl)-poly-D, L-alanyl--poly-lysyl. J Exp Med. 1974 Aug 1;140(2):301–312. doi: 10.1084/jem.140.2.301. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Taussig M. J. T cell factor which can replace T cells in vivo. Nature. 1974 Mar 15;248(445):234–236. doi: 10.1038/248234a0. [DOI] [PubMed] [Google Scholar]
  19. Waldmann H., Munro A. Letter: T cell-dependent mediator in the immune response. Nature. 1973 Jun 8;243(5406):356–357. doi: 10.1038/243356a0. [DOI] [PubMed] [Google Scholar]
  20. Wilson D. B. Quantitative studies on the mixed lymphocyte interaction in rats. I. Conditions and parameters of response. J Exp Med. 1967 Oct 1;126(4):625–654. doi: 10.1084/jem.126.4.625. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES