Abstract
Several in vitro parameters of cellular immunity were examined in BALB/c mice with an experimentally induced fibrosarcoma tumor. The results of capillary migration of spleen cells in high tumor cell dose inoculated mice show appearance of cellular immune response in the early stages of the tumor growth. As the tumor progresses, the cellular response declines and rapidly disappears, culminating in stimulation values near the time of the death of these mice. The blastogenic studies also show early cellular recognition of tumor antigen by mouse spleen cells and whole blood (Z24 h). After the 2nd day following tumor injection, no blast transformation is noted. However, the results obtained with a lower inoculating tumor cell dose demonstrate an initial cellular recognition on the 7th day. This response gradually disappears by the 19th day and remains negative up to the time of the death of these mice. This cellular immunity was confirmed by the cytotoxic experiments showing that the primary cells responsible for this cellular reactivity were the immune cells. An interesting finding was the presence of a factor(s) capable of blocking the cytotoxic effect. The nature and mechanism of this blocking factor(s) is now under investigation.
Full Text
The Full Text of this article is available as a PDF (1,022.5 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- ABERCROMBIE M., HEAYSMAN J. E., KARTHAUSER H. M. Social behaviour of cells in tissue culture. III. Mutual influence of sarcoma cells and fibroblasts. Exp Cell Res. 1957 Oct;13(2):276–291. doi: 10.1016/0014-4827(57)90007-1. [DOI] [PubMed] [Google Scholar]
- Bach F. H., Voynow N. K. One-way stimulation in mixed leukocyte cultures. Science. 1966 Jul 29;153(3735):545–547. doi: 10.1126/science.153.3735.545. [DOI] [PubMed] [Google Scholar]
- Bloom B. R., Bennett B., Oettgen H. F., McLean E. P., Old L. J. Demonstration of delayed hypersensitivity to soluble antigens of chemically induced tumors by inhibition of macrophage migration. Proc Natl Acad Sci U S A. 1969 Dec;64(4):1176–1180. doi: 10.1073/pnas.64.4.1176. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brunner K. T., Mauel J., Cerottini J. C., Chapuis B. Quantitative assay of the lytic action of immune lymphoid cells on 51-Cr-labelled allogeneic target cells in vitro; inhibition by isoantibody and by drugs. Immunology. 1968 Feb;14(2):181–196. [PMC free article] [PubMed] [Google Scholar]
- Brunner K. T., Mauel J., Rudolf H., Chapuis B. Studies of allograft immunity in mice. I. Induction, development and in vitro assay of cellular immunity. Immunology. 1970 Apr;18(4):501–515. [PMC free article] [PubMed] [Google Scholar]
- Evans R., Alexander P. Cooperation of immune lymphoid cells with macrophages in tumour immunity. Nature. 1970 Nov 14;228(5272):620–622. doi: 10.1038/228620a0. [DOI] [PubMed] [Google Scholar]
- FOLEY E. J. Antigenic properties of methylcholanthrene-induced tumors in mice of the strain of origin. Cancer Res. 1953 Dec;13(12):835–837. [PubMed] [Google Scholar]
- Fridman W. H., Kourilsky F. M. Stimulation of lymphocytes by autologous leukaemic cells in acute leukaemia. Nature. 1969 Oct 18;224(5216):277–279. doi: 10.1038/224277a0. [DOI] [PubMed] [Google Scholar]
- Hartzman R. J., Bach M. L., Bach F. H., Thurman G. B., Sell K. W. Precipitation of radioactively labeled samples: a semi-automatic multiple-sample processor. Cell Immunol. 1972 Jun;4(2):182–186. doi: 10.1016/0008-8749(72)90018-4. [DOI] [PubMed] [Google Scholar]
- Hellström K. E., Hellström I. Cellular immunity against tumor antigens. Adv Cancer Res. 1969;12:167–223. doi: 10.1016/s0065-230x(08)60331-0. [DOI] [PubMed] [Google Scholar]
- Kanner S. P., Mardiney M. R., Jr, Mangi R. J. Experience with a mixed lymphocyte-tumor reaction as a method of detecting antigenic differences between normal and neoplastic cells. J Immunol. 1970 Oct;105(4):1052–1055. [PubMed] [Google Scholar]
- Klein G. Tumor antigens. Annu Rev Microbiol. 1966;20:223–252. doi: 10.1146/annurev.mi.20.100166.001255. [DOI] [PubMed] [Google Scholar]
- Mackaness G. B. The influence of immunologically committed lymphoid cells on macrophage activity in vivo. J Exp Med. 1969 May 1;129(5):973–992. doi: 10.1084/jem.129.5.973. [DOI] [PMC free article] [PubMed] [Google Scholar]
- OLD L. J., BOYSE E. A. IMMUNOLOGY OF EXPERIMENTAL TUMORS. Annu Rev Med. 1964;15:167–186. doi: 10.1146/annurev.me.15.020164.001123. [DOI] [PubMed] [Google Scholar]
- Rosenau W., Moon H. D. Studies on the mechanism of the cytolytic effect of sensitized lymphocytes. J Immunol. 1966 Jan;96(1):80–84. [PubMed] [Google Scholar]
- Stuart F. P., Fitch F. W., Rowley D. A., Hellström I., Biesecker J. L., Hellström K. E. Presence of both cell-mediated immunity and serum-blocking factors in rat renal allografts "enhanced" by passive immunization. Transplantation. 1971 Oct;12(4):331–333. doi: 10.1097/00007890-197110000-00020. [DOI] [PubMed] [Google Scholar]
- Thurman G. B., Strong D. M., Ahmed A., Green S. S., Sell K. W., Hartzman R. J., Bach F. H. Human mixed lymphocyte cultures. Evaluation of a microculture technique utilizing the Multiple Automated Sample Harvester (MASH). Clin Exp Immunol. 1973 Oct;15(2):289–302. [PMC free article] [PubMed] [Google Scholar]
- Wagner H., Feldmann M. Cell-mediated immune response in vitro. I. A new in vitro system for the generation of cell-mediated cytotoxic activity. Cell Immunol. 1972 Mar;3(3):405–420. doi: 10.1016/0008-8749(72)90246-8. [DOI] [PubMed] [Google Scholar]