Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1985 Apr;162(1):361–366. doi: 10.1128/jb.162.1.361-366.1985

Structure of complex flagellar filaments in Rhizobium meliloti.

G Krupski, R Götz, K Ober, E Pleier, R Schmitt
PMCID: PMC218997  PMID: 3980440

Abstract

The complex flagella of Rhizobium meliloti 2011 and MVII-1 were analyzed with regard to serology, fine structure, subunits, and amino acid composition. The serological identities of flagellar filaments of the two strains were demonstrated by double immunodiffusion with antiflagellin antiserum. The filaments had a diameter of 16 nm. Their morphology was dominated by the prominent undulations of an external three-start helix running at a 10-nm axial distance and at an angle of 32 degrees. Faint nearly axial striations indicated the presence of a tubular core of a different helical order. The complex filaments consisted of 40,000-dalton flagellin monomers. Typically, the amino acid composition was 3 to 4% higher in nonpolar residues and 5 to 7% lower in aspartic and glutamic acids (and their amides) than that of plain flagellar proteins. There were no immunochemical relationships among Pseudomonas rhodos, Rhizobium lupini, and R. meliloti complex flagella, suggesting that the latter represent a new class.

Full text

PDF
361

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adler J. A method for measuring chemotaxis and use of the method to determine optimum conditions for chemotaxis by Escherichia coli. J Gen Microbiol. 1973 Jan;74(1):77–91. doi: 10.1099/00221287-74-1-77. [DOI] [PubMed] [Google Scholar]
  2. CHINARD F. P. Photometric estimation of proline and ornithine. J Biol Chem. 1952 Nov;199(1):91–95. [PubMed] [Google Scholar]
  3. Edelhoch H. Spectroscopic determination of tryptophan and tyrosine in proteins. Biochemistry. 1967 Jul;6(7):1948–1954. doi: 10.1021/bi00859a010. [DOI] [PubMed] [Google Scholar]
  4. Gábor M. Transformation of streptomycin markers in rough strains of Rhizobium lupini. II. The relation between the derterminant of streptomycin dependence and those for streptomycin resistance and sensitiveness. Genetics. 1965 Nov;52(5):905–913. doi: 10.1093/genetics/52.5.905. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Kagawa H., Owaribe K., Asakura S., Takahashi N. Flagellar hook protein from Salmonella SJ25. J Bacteriol. 1976 Jan;125(1):68–73. doi: 10.1128/jb.125.1.68-73.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. LABAW L. W., MOSLEY V. M. Periodic structure in the flagella and cell walls of a bacterium. Biochim Biophys Acta. 1954 Nov;15(3):325–331. doi: 10.1016/0006-3002(54)90033-5. [DOI] [PubMed] [Google Scholar]
  7. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  8. Lotz W., Acker G., Schmitt R. Bacteriophage 7-7-1 adsorbs to the complex flagella of Rhizobium lupini H13-3. J Gen Virol. 1977 Jan;34(1):9–17. doi: 10.1099/0022-1317-34-1-9. [DOI] [PubMed] [Google Scholar]
  9. MARX R., HEUMANN W. [On the flagellar fine structure and fimbriae in 2 Pseudomonas strains]. Arch Mikrobiol. 1962;43:245–254. [PubMed] [Google Scholar]
  10. Macnab R. M., Aizawa S. Bacterial motility and the bacterial flagellar motor. Annu Rev Biophys Bioeng. 1984;13:51–83. doi: 10.1146/annurev.bb.13.060184.000411. [DOI] [PubMed] [Google Scholar]
  11. Maruyama M., Lodderstaedt G., Schmitt R. Purification and biochemical properties of complex flagella isolated from Rhizobium lupini H13-3. Biochim Biophys Acta. 1978 Jul 21;535(1):110–124. doi: 10.1016/0005-2795(78)90038-7. [DOI] [PubMed] [Google Scholar]
  12. Schleicher L. R., 3rd, Bergman K. The amino acid composition of Rhizobium meliloti flagellin: occurrence of a single tryptophan residue. Biochem Biophys Res Commun. 1981 Jun;100(4):1634–1641. doi: 10.1016/0006-291x(81)90706-3. [DOI] [PubMed] [Google Scholar]
  13. Schmitt R., Raska I., Mayer F. Plain and complex flagella of Pseudomonas rhodos: analysis of fine structure and composition. J Bacteriol. 1974 Feb;117(2):844–857. doi: 10.1128/jb.117.2.844-857.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Shapiro A. L., Viñuela E., Maizel J. V., Jr Molecular weight estimation of polypeptide chains by electrophoresis in SDS-polyacrylamide gels. Biochem Biophys Res Commun. 1967 Sep 7;28(5):815–820. doi: 10.1016/0006-291x(67)90391-9. [DOI] [PubMed] [Google Scholar]
  15. Simon M. I., Emerson S. U., Shaper J. H., Bernard P. D., Glazer A. N. Classification of Bacillus subtilis flagellins. J Bacteriol. 1977 Apr;130(1):200–204. doi: 10.1128/jb.130.1.200-204.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Zimmerman J. L., Szeto W. W., Ausubel F. M. Molecular characterization of Tn5-induced symbiotic (Fix-) mutants of Rhizobium meliloti. J Bacteriol. 1983 Dec;156(3):1025–1034. doi: 10.1128/jb.156.3.1025-1034.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES