Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1975 Nov 1;142(5):1322–1326. doi: 10.1084/jem.142.5.1322

C1 fixation and classical complement pathway activation by a fragment of the Cmu4 domain of IgM

PMCID: PMC2189977  PMID: 1194853

Abstract

A 56 residue fragment derived from a Waldenstrome IgM protein and consisting of 24 residues of the amino-terminal portion of the Cmu4 domain disulfide bonded to 32 residues of the carboxy-terminal region of the loop has been shown to fix active C1 (C1) in a C1-fixation assay. Cleavage of the disulfide bond within the CH4 fragment resulted in a marked decrease of C1-fixing ability, although the isolated A and B fragments did retain a limited ability to fix C1. Upon incubation with normal human serum the intact CH4 fragment and equal molar amounts of the isolated A and B peptides consumed C4 suggesting that the C1- activating determinant of IgM remains intact in these three fragments. Furthermore, on a molar basis the intact or the reduced CH4 fragment consumed C4 as effectively as each of its component chains suggesting that transient binding of C1 by the individual A and B peptide chains is sufficient to activate C1. On the basis of these observations it is proposed that a classical complement fixation function, i.e. C1 binding and activation, can be localized within a region of the IgM molecule corresponding to the Cmu4 domain.

Full Text

The Full Text of this article is available as a PDF (325.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Florent G., Lehman D., Lockhart D., Putnam F. W. Identity of the Fc fragments of pathological and normal human immunoglobulin M. Biochemistry. 1974 Jul 30;13(16):3372–3381. doi: 10.1021/bi00713a030. [DOI] [PubMed] [Google Scholar]
  2. Gaither T. A., Alling D. W., Frank M. M. A new one-step method for the functional assay of the fourth component (C4) of human and guinea pig complement. J Immunol. 1974 Aug;113(2):574–583. [PubMed] [Google Scholar]
  3. Hartley B. S. Strategy and tactics in protein chemistry. Biochem J. 1970 Oct;119(5):805–822. doi: 10.1042/bj1190805f. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Hester R. B., Mole J. E., Schrohenloher R. E. Evidence for the absence of noncovalent bonds in the Fcmu region of IgM. J Immunol. 1975 Jan;114(1 Pt 2):486–491. [PubMed] [Google Scholar]
  5. Hurst M. M., Volanakis J. E., Hester R. B., Stroud R. M., Bennett J. C. The structural basis for binding of complement by immunoglobulin M. J Exp Med. 1974 Oct 1;140(4):1117–1121. doi: 10.1084/jem.140.4.1117. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Putnam F. W., Florent G., Paul C., Shinoda T., Shimizu A. Complete amino acid sequence of the Mu heavy chain of a human IgM immunoglobulin. Science. 1973 Oct 19;182(4109):287–291. doi: 10.1126/science.182.4109.287. [DOI] [PubMed] [Google Scholar]
  7. Turner M. W., Bennich H. Subfragments from the Fc fragment of human immunoglobulin G. Isolation and physicochemical charaterization. Biochem J. 1968 Mar;107(2):171–178. doi: 10.1042/bj1070171. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Watanabe S., Barnikol H. U., Horn J., Bertram J., Hilschmann N. Die Primärstruktur eines monoklonalen IgM-Immunoglobulins (Makroglobulin Gal.), II. Die Aminosäuresequenz der H-Kette (mu-Typ,Subgruppe HIII), Struktur des gesamten IgM-Moleküls. Hoppe Seylers Z Physiol Chem. 1973 Oct-Nov;354(10-11):1505–1509. [PubMed] [Google Scholar]
  9. Woods K. R., Wang K. T. Separation of dansyl-amino acids by polyamide layer chromatography. Biochim Biophys Acta. 1967 Feb 21;133(2):369–370. doi: 10.1016/0005-2795(67)90078-5. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES