Abstract
A 56 residue fragment derived from a Waldenstrome IgM protein and consisting of 24 residues of the amino-terminal portion of the Cmu4 domain disulfide bonded to 32 residues of the carboxy-terminal region of the loop has been shown to fix active C1 (C1) in a C1-fixation assay. Cleavage of the disulfide bond within the CH4 fragment resulted in a marked decrease of C1-fixing ability, although the isolated A and B fragments did retain a limited ability to fix C1. Upon incubation with normal human serum the intact CH4 fragment and equal molar amounts of the isolated A and B peptides consumed C4 suggesting that the C1- activating determinant of IgM remains intact in these three fragments. Furthermore, on a molar basis the intact or the reduced CH4 fragment consumed C4 as effectively as each of its component chains suggesting that transient binding of C1 by the individual A and B peptide chains is sufficient to activate C1. On the basis of these observations it is proposed that a classical complement fixation function, i.e. C1 binding and activation, can be localized within a region of the IgM molecule corresponding to the Cmu4 domain.
Full Text
The Full Text of this article is available as a PDF (325.5 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Florent G., Lehman D., Lockhart D., Putnam F. W. Identity of the Fc fragments of pathological and normal human immunoglobulin M. Biochemistry. 1974 Jul 30;13(16):3372–3381. doi: 10.1021/bi00713a030. [DOI] [PubMed] [Google Scholar]
- Gaither T. A., Alling D. W., Frank M. M. A new one-step method for the functional assay of the fourth component (C4) of human and guinea pig complement. J Immunol. 1974 Aug;113(2):574–583. [PubMed] [Google Scholar]
- Hartley B. S. Strategy and tactics in protein chemistry. Biochem J. 1970 Oct;119(5):805–822. doi: 10.1042/bj1190805f. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hester R. B., Mole J. E., Schrohenloher R. E. Evidence for the absence of noncovalent bonds in the Fcmu region of IgM. J Immunol. 1975 Jan;114(1 Pt 2):486–491. [PubMed] [Google Scholar]
- Hurst M. M., Volanakis J. E., Hester R. B., Stroud R. M., Bennett J. C. The structural basis for binding of complement by immunoglobulin M. J Exp Med. 1974 Oct 1;140(4):1117–1121. doi: 10.1084/jem.140.4.1117. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Putnam F. W., Florent G., Paul C., Shinoda T., Shimizu A. Complete amino acid sequence of the Mu heavy chain of a human IgM immunoglobulin. Science. 1973 Oct 19;182(4109):287–291. doi: 10.1126/science.182.4109.287. [DOI] [PubMed] [Google Scholar]
- Turner M. W., Bennich H. Subfragments from the Fc fragment of human immunoglobulin G. Isolation and physicochemical charaterization. Biochem J. 1968 Mar;107(2):171–178. doi: 10.1042/bj1070171. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Watanabe S., Barnikol H. U., Horn J., Bertram J., Hilschmann N. Die Primärstruktur eines monoklonalen IgM-Immunoglobulins (Makroglobulin Gal.), II. Die Aminosäuresequenz der H-Kette (mu-Typ,Subgruppe HIII), Struktur des gesamten IgM-Moleküls. Hoppe Seylers Z Physiol Chem. 1973 Oct-Nov;354(10-11):1505–1509. [PubMed] [Google Scholar]
- Woods K. R., Wang K. T. Separation of dansyl-amino acids by polyamide layer chromatography. Biochim Biophys Acta. 1967 Feb 21;133(2):369–370. doi: 10.1016/0005-2795(67)90078-5. [DOI] [PubMed] [Google Scholar]