Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1975 Nov 1;142(5):1241–1253. doi: 10.1084/jem.142.5.1241

Properties of antigen-specific suppressive T-cell factor in the regulation of antibody response of the mouse. I. In vivo activity and immunochemical characterization

PMCID: PMC2189981  PMID: 1081576

Abstract

An antigen-specific suppressive T-cell factor was extracted from physically disrupted thymocytes and spleen cells of mice that had been immunized with soluble protein antigens. The factor, when inoculated into syngeneic normal mice, could induce a significant suppression of IgG antibody response against a hapten coupled to the carrier protein by which the donor of the suppressor factor was immunized. The suppressor factor was found only effective in suppressing the antibody response of syngeneic or H-2 histocompatible recipients. The suppressive T-cell factor was removed by absorption with immunoadsorbent composed of the relevant antigen, but not with any of those of anti-immunoglobulin antibodies. The factor was successfully removed by alloantibodies with specificity for the K end (H-2K, I-A and I-B) of the H-2 complex of the donor strain, but not by those for the D end (I-C, SsSlp, and H-2D). The activity was removed by absorption with a heterologous antithymocyte serum. The mol wt of the suppression T- cell factor was between 35,000 and 60,000 as determined by Sephadex G- 200 gel filtration. The suppressive T-cell factor was found to be a heat-liable protein.

Full Text

The Full Text of this article is available as a PDF (799.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andrews P. The gel-filtration behaviour of proteins related to their molecular weights over a wide range. Biochem J. 1965 Sep;96(3):595–606. doi: 10.1042/bj0960595. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Armerding D., Katz D. H. Activation of T and B lymphocytes in vitro. II. Biological and biochemical properties of an allogeneic effect factor (AEF) active in triggering specific B lymphocytes. J Exp Med. 1974 Jul 1;140(1):19–37. doi: 10.1084/jem.140.1.19. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Armerding D., Sachs D. H., Katz D. H. Activation of T and B lymphocytes in vitro. III. Presence of Ia determinants on allogeneic effect factor. J Exp Med. 1974 Dec 1;140(6):1717–1722. doi: 10.1084/jem.140.6.1717. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Axén R., Porath J., Ernback S. Chemical coupling of peptides and proteins to polysaccharides by means of cyanogen halides. Nature. 1967 Jun 24;214(5095):1302–1304. doi: 10.1038/2141302a0. [DOI] [PubMed] [Google Scholar]
  5. Baker P. J., Stashak P. W., Amsbaugh D. F., Prescott B. Regulation of the antibody response to type 3 pneumococcal polysaccharide. IV. Role of suppressor T cells in the development of low-dose paralysis. J Immunol. 1974 Jun;112(6):2020–2027. [PubMed] [Google Scholar]
  6. Basten A., Miller J. F., Sprent J., Cheers C. Cell-to-cell interaction in the immune response. X. T-cell-dependent suppression in tolerant mice. J Exp Med. 1974 Jul 1;140(1):199–217. doi: 10.1084/jem.140.1.199. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Benjamin D. C. Evidence for specific suppression in the maintenance of immunologic tolerance. J Exp Med. 1975 Mar 1;141(3):635–646. doi: 10.1084/jem.141.3.635. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Cerottini J. C., Unanue E. R. Genetic control of the immune response of mice to hemocyanin. I. Th role of macrophages. J Immunol. 1971 Mar;106(3):732–739. [PubMed] [Google Scholar]
  9. Cunningham A. J., Szenberg A. Further improvements in the plaque technique for detecting single antibody-forming cells. Immunology. 1968 Apr;14(4):599–600. [PMC free article] [PubMed] [Google Scholar]
  10. Doria G., Agarossi G., Di Pietro S. Enhancing activity of thymocyte culture cell-free medium on the in vitro immune response of spleen cells from neonatally thymectomized mice to sheep RBC. J Immunol. 1972 Jan;108(1):268–270. [PubMed] [Google Scholar]
  11. Feldmann M., Basten A. Cell interactions in the immune response in vitro. IV. Comparison of the effects of antigen-specific and allogeneic thymus-derived cell factors. J Exp Med. 1972 Oct 1;136(4):722–736. doi: 10.1084/jem.136.4.722. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Gershon R. K., Kondo K. Infectious immunological tolerance. Immunology. 1971 Dec;21(6):903–914. [PMC free article] [PubMed] [Google Scholar]
  13. Gershon R. K. T cell control of antibody production. Contemp Top Immunobiol. 1974;3:1–40. doi: 10.1007/978-1-4684-3045-5_1. [DOI] [PubMed] [Google Scholar]
  14. Gorczynski R. M., Miller R. G., Phillips R. A. Initiation of antibody production to sheep erythrocytes in vitro: replacement of the requirement for T-cells with a cell-free factor isolated from cultures of lymphoid cells. J Immunol. 1972 Feb;108(2):547–551. [PubMed] [Google Scholar]
  15. Ha T. Y., Waksman B. H. Role of the thymus in tolerance. X. "Suppressor" activity of antigen-stimulated rat thymocytes transferred to normal recipients. J Immunol. 1973 May;110(5):1290–1299. [PubMed] [Google Scholar]
  16. Kapp J. A., Pierce C. W., Schlossman S., Benacerraf B. Genetic control of immune responses in vitro. V. Stimulation of suppressor T cells in nonresponder mice by the terpolymer L-glutamic acid 60-L-alanine 30-L-tyrosine 10 (GAT). J Exp Med. 1974 Sep 1;140(3):648–659. doi: 10.1084/jem.140.3.648. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kishimoto T., Ishizaka K. Regulation of antibody response in vitro. VII. Enhancing soluble factors for IgG and IgE antibody response. J Immunol. 1973 Oct;111(4):1194–1205. [PubMed] [Google Scholar]
  18. Munro A. J., Taussig M. J., Campbell R., Williams H., Lawson Y. Antigen-specific T-cell factor in cell cooperation: physical properties and mapping in the left-hand (K) half of H-2. J Exp Med. 1974 Dec 1;140(6):1579–1587. doi: 10.1084/jem.140.6.1579. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Okumura K., Tada T. Regulation of homocytotropic antibody formation in the rat. IX. Further characterization of the antigen-specific inhibitory T cell factor in hapten-specific homocytotropic antibody response. J Immunol. 1974 Feb;112(2):783–791. [PubMed] [Google Scholar]
  20. Okumura K., Tada T. Regulation of homocytotropic antibody formation in the rat. VI. Inhibitory effect of thymocytes on the homocytotropic antibody response. J Immunol. 1971 Dec;107(6):1682–1689. [PubMed] [Google Scholar]
  21. Rubin A. S., Coons A. H. Specific heterologous enhancement of immune responses. 3. Partial characterization of supernatant material with enhancing activity. J Immunol. 1972 Jun;108(6):1597–1604. [PubMed] [Google Scholar]
  22. Schimpl A., Wecker E. Replacement of T-cell function by a T-cell product. Nat New Biol. 1972 May 3;237(70):15–17. doi: 10.1038/newbio237015a0. [DOI] [PubMed] [Google Scholar]
  23. Sjöberg O., Andersson J., Möller G. Reconstitution of the antibody response in vitro of T cell-deprived spleen cells by supernatants from spleen cell cultures. J Immunol. 1972 Dec;109(6):1379–1385. [PubMed] [Google Scholar]
  24. Tada T., Okumura K., Taniguchi M. Regulation of homocytotropic antibody formation in the rat. 8. An antigen-specific T cell factor that regulates anti-hapten homocytotropic antibody response. J Immunol. 1973 Sep;111(3):952–961. [PubMed] [Google Scholar]
  25. Tada T., Takemori T. Selective roles of thymus-derived lymphocytes in the antibody response. I. Differential suppressive effect of carrier-primed T cells on hapten-specific IgM and IgG antibody responses. J Exp Med. 1974 Jul 1;140(1):239–252. doi: 10.1084/jem.140.1.239. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Takemori T., Tada T. Selective roles of thymus-derived lymphocytes in the antibody response. II. Preferential suppression of high-affinity antibody-forming cells by carrier-primed suppressor T cells. J Exp Med. 1974 Jul 1;140(1):253–266. doi: 10.1084/jem.140.1.253. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Taussig J., Mozes E., Isac R. Antigen-specific thymus cell factors in the genetic control of the immune response to poly-(tyrosyl, glutamyl)-poly-D, L-alanyl--poly-lysyl. J Exp Med. 1974 Aug 1;140(2):301–312. doi: 10.1084/jem.140.2.301. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Taussig M. J. T cell factor which can replace T cells in vivo. Nature. 1974 Mar 15;248(445):234–236. doi: 10.1038/248234a0. [DOI] [PubMed] [Google Scholar]
  29. Watson J. The role of humoral factors in the initiation of in vitro primary immune responses. 3. Characterization of factors that replace thymus-derived cells. J Immunol. 1973 Nov;111(5):1301–1313. [PubMed] [Google Scholar]
  30. Zembala M., Asherson G. L. Depression of the T cell phenomenon of contact sensitivity by T cells from unresponsive mice. Nature. 1973 Jul 27;244(5413):227–228. doi: 10.1038/244227a0. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES